Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119743, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705361

RESUMEN

Human DNA polymerase ι (Polι) belongs to the Y-family of specialized DNA polymerases engaged in the DNA damage tolerance pathway of translesion DNA synthesis that is crucial to the maintenance of genome integrity. The extreme infidelity of Polι and the fact that both its up- and down-regulation correlate with various cancers indicate that Polι expression and access to the replication fork should be strictly controlled. Here, we identify RNF2, an E3 ubiquitin ligase, as a new interacting partner of Polι that is responsible for Polι stabilization in vivo. Interestingly, while we report that RNF2 does not directly ubiquitinate Polι, inhibition of the E3 ubiquitin ligase activity of RNF2 affects the cellular level of Polι thereby protecting it from destabilization. Additionally, we indicate that this mechanism is more general, as DNA polymerase η, another Y-family polymerase and the closest paralogue of Polι, share similar features.

2.
Cell Mol Life Sci ; 81(1): 218, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758395

RESUMEN

The endocytic adaptor protein 2 (AP-2) complex binds dynactin as part of its noncanonical function, which is necessary for dynein-driven autophagosome transport along microtubules in neuronal axons. The absence of this AP-2-dependent transport causes neuronal morphology simplification and neurodegeneration. The mechanisms that lead to formation of the AP-2-dynactin complex have not been studied to date. However, the inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) enhances the transport of newly formed autophagosomes by influencing the biogenesis and protein interactions of Rab-interacting lysosomal protein (RILP), another dynein cargo adaptor. We tested effects of mTORC1 inhibition on interactions between the AP-2 and dynactin complexes, with a focus on their two essential subunits, AP-2ß and p150Glued. We found that the mTORC1 inhibitor rapamycin enhanced p150Glued-AP-2ß complex formation in both neurons and non-neuronal cells. Additional analysis revealed that the p150Glued-AP-2ß interaction was indirect and required integrity of the dynactin complex. In non-neuronal cells rapamycin-driven enhancement of the p150Glued-AP-2ß interaction also required the presence of cytoplasmic linker protein 170 (CLIP-170), the activation of autophagy, and an undisturbed endolysosomal system. The rapamycin-dependent p150Glued-AP-2ß interaction occurred on lysosomal-associated membrane protein 1 (Lamp-1)-positive organelles but without the need for autolysosome formation. Rapamycin treatment also increased the acidification and number of acidic organelles and increased speed of the long-distance retrograde movement of Lamp-1-positive organelles. Altogether, our results indicate that autophagy regulates the p150Glued-AP-2ß interaction, possibly to coordinate sufficient motor-adaptor complex availability for effective lysosome transport.


Asunto(s)
Autofagia , Complejo Dinactina , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Neuronas , Lisosomas/metabolismo , Complejo Dinactina/metabolismo , Animales , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neuronas/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Sirolimus/farmacología , Ratones , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Autofagosomas/metabolismo , Unión Proteica
3.
Elife ; 122023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719185

RESUMEN

Aging affects iron homeostasis, as evidenced by tissue iron loading and anemia in the elderly. Iron needs in mammals are met primarily by iron recycling from senescent red blood cells (RBCs), a task chiefly accomplished by splenic red pulp macrophages (RPMs) via erythrophagocytosis. Given that RPMs continuously process iron, their cellular functions might be susceptible to age-dependent decline, a possibility that has been unexplored to date. Here, we found that 10- to 11-month-old female mice exhibit iron loading in RPMs, largely attributable to a drop in iron exporter ferroportin, which diminishes their erythrophagocytosis capacity and lysosomal activity. Furthermore, we identified a loss of RPMs during aging, underlain by the combination of proteotoxic stress and iron-dependent cell death resembling ferroptosis. These impairments lead to the retention of senescent hemolytic RBCs in the spleen, and the formation of undegradable iron- and heme-rich extracellular protein aggregates, likely derived from ferroptotic RPMs. We further found that feeding mice an iron-reduced diet alleviates iron accumulation in RPMs, enhances their ability to clear erythrocytes, and reduces damage. Consequently, this diet ameliorates hemolysis of splenic RBCs and reduces the burden of protein aggregates, mildly increasing serum iron availability in aging mice. Taken together, we identified RPM collapse as an early hallmark of aging and demonstrated that dietary iron reduction improves iron turnover efficacy.


Asunto(s)
Hierro , Fagocitosis , Femenino , Animales , Ratones , Hierro/metabolismo , Fagocitosis/fisiología , Agregado de Proteínas , Eritrocitos/fisiología , Hemólisis , Envejecimiento , Mamíferos/metabolismo
5.
Life Sci Alliance ; 5(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35354596

RESUMEN

Within the endolysosomal pathway in mammalian cells, ESCRT complexes facilitate degradation of proteins residing in endosomal membranes. Here, we show that mammalian ESCRT-I restricts the size of lysosomes and promotes degradation of proteins from lysosomal membranes, including MCOLN1, a Ca2+ channel protein. The altered lysosome morphology upon ESCRT-I depletion coincided with elevated expression of genes annotated to biogenesis of lysosomes due to prolonged activation of TFEB/TFE3 transcription factors. Lack of ESCRT-I also induced transcription of cholesterol biosynthesis genes, in response to inefficient delivery of cholesterol from endolysosomal compartments. Among factors that could possibly activate TFEB/TFE3 signaling upon ESCRT-I deficiency, we excluded lysosomal cholesterol accumulation and Ca2+-mediated dephosphorylation of TFEB/TFE3. However, we discovered that this activation occurs due to the inhibition of Rag GTPase-dependent mTORC1 pathway that specifically reduced phosphorylation of TFEB at S112. Constitutive activation of the Rag GTPase complex in cells lacking ESCRT-I restored S112 phosphorylation and prevented TFEB/TFE3 activation. Our results indicate that ESCRT-I deficiency evokes a homeostatic response to counteract lysosomal nutrient starvation, that is, improper supply of nutrients derived from lysosomal degradation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Complejos de Clasificación Endosomal Requeridos para el Transporte , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal
6.
EMBO Rep ; 22(8): e52071, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34288362

RESUMEN

Organismal functionality and reproduction depend on metabolic rewiring and balanced energy resources. However, the crosstalk between organismal homeostasis and fecundity and the associated paracrine signaling mechanisms are still poorly understood. Using Caenorhabditis elegans, we discovered that large extracellular vesicles (known as exophers) previously found to remove damaged subcellular elements in neurons and cardiomyocytes are released by body wall muscles (BWM) to support embryonic growth. Exopher formation (exopheresis) by BWM is sex-specific and a non-cell autonomous process regulated by developing embryos in the uterus. Embryo-derived factors induce the production of exophers that transport yolk proteins produced in the BWM and ultimately deliver them to newly formed oocytes. Consequently, offspring of mothers with a high number of muscle-derived exophers grew faster. We propose that the primary role of muscular exopheresis is to stimulate reproductive capacity, thereby influencing the adaptation of worm populations to the current environmental conditions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Aptitud Genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Femenino , Masculino , Músculos , Reproducción
7.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33497611

RESUMEN

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , ADN Helicasas/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Esclerosis Tuberosa/metabolismo , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/química , Evolución Molecular , Femenino , Humanos , Insulina/farmacología , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenotipo , Proteínas de Unión a Poli-ADP-Ribosa/química , ARN Helicasas/química , Proteínas con Motivos de Reconocimiento de ARN/química , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo
8.
Sci Rep ; 9(1): 4789, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886224

RESUMEN

DNA polymerase iota (Polι) belongs to the Y-family of DNA polymerases that are involved in DNA damage tolerance through their role in translesion DNA synthesis. Like all other Y-family polymerases, Polι interacts with proliferating cell nuclear antigen (PCNA), Rev1, ubiquitin and ubiquitinated-PCNA and is also ubiquitinated itself. Here, we report that Polι also interacts with the p300 acetyltransferase and is acetylated. The primary acetylation site is K550, located in the Rev1-interacting region. However, K550 amino acid substitutions have no effect on Polι's ability to interact with Rev1. Interestingly, we find that acetylation of Polι significantly and specifically increases in response to SN2 alkylating agents and to a lower extent to SN1 alkylating and oxidative agents. As we have not observed acetylation of Polι's closest paralogue, DNA polymerase eta (Polη), with which Polι shares many functional similarities, we believe that this modification might exclusively regulate yet to be determined, and separate function(s) of Polι.


Asunto(s)
Alquilantes/farmacología , ADN Polimerasa Dirigida por ADN/metabolismo , Acetilación , Secuencias de Aminoácidos , Sitios de Unión , ADN Polimerasa Dirigida por ADN/química , Células HEK293 , Humanos , Nucleotidiltransferasas/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Factores de Transcripción p300-CBP/metabolismo , ADN Polimerasa iota
9.
Mol Neurobiol ; 56(7): 4866-4879, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30406428

RESUMEN

The proper shape of dendritic arbors of different types of neurons determines their proper communication within neuronal networks. The shape of dendritic arbors is acquired during a complex and multistep process called dendritogenesis. In most cases, once proper morphology is achieved, it remains stable throughout the lifespan, with the exception of rare events during which dendrites are abruptly pruned. The endosomal sorting complex required for transport (ESCRT) is multisubunit machinery that is involved in various cellular processes when membrane scission is needed. ESCRT subcomplexes regulate dendrite pruning in Drosophila neurons. However, the contribution of ESCRT components to the dendritogenesis of mammalian neurons and control of dendrite stability remains poorly defined. In the present study, we found that ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III and Vps4 are required for proper dendrite morphology under basal culture conditions and for accelerated dendritogenesis in response to phosphoinositide 3-kinase (PI3K) activation. The knockdown of Vps28 (ESCRT-I) and Vps25 (ESCRT-II) resulted in downregulation of the activity of mechanistic/mammalian target of rapamycin complex 1. We also demonstrated that Vps28, Vps24, and Vps25 are required for dendrite stabilization in mature neurons.


Asunto(s)
Dendritas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Animales , Dendritas/ultraestructura , Células HEK293 , Humanos , Neurogénesis , Ratas , Ubiquitinación
10.
Mol Neurobiol ; 55(7): 6050-6062, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29143288

RESUMEN

Glycogen synthase kinases-3ß (GSK3ß) is a key regulator of cell homeostasis. In neurons, GSK3ß contributes to control of neuronal transmission and plasticity. Despite extensive studies in non-neuronal cells, crosstalk between GSK3ß and other signaling pathways remains not well defined in neurons. In the present study, we report that GSK3ß positively affected the activity of effectors of mammalian target of rapamycin complex 1 (mTORC1) and complex 2 (mTORC2), in mature neurons in vitro and in vivo. GSK3ß also promoted prosurvival signaling and attenuated kainic acid-induced apoptosis. Our study identified GSK3ß as a positive regulator of prosurvival signaling, including the mTOR pathway, and indicates the possible neuroprotective role of GSK3ß in models of pharmacologically induced excitotoxicity.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neuronas/citología , Neuronas/enzimología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis , Encéfalo/enzimología , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Isoenzimas/metabolismo , Ácido Kaínico , Ratones Transgénicos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína S6 Ribosómica/metabolismo
11.
Mol Neurobiol ; 54(4): 2562-2578, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-26993296

RESUMEN

Epileptogenesis is a process triggered by initial environmental or genetic factors that result in epilepsy and may continue during disease progression. Important parts of this process include changes in transcriptome and the pathological rewiring of neuronal circuits that involves changes in neuronal morphology. Mammalian/mechanistic target of rapamycin (mTOR) is upregulated by proconvulsive drugs, e.g., kainic acid, and is needed for progression of epileptogenesis, but molecular aspects of its contribution are not fully understood. Since mTOR can modulate transcription, we tested if rapamycin, an mTOR complex 1 inhibitor, affects kainic acid-evoked transcriptome changes. Using microarray technology, we showed that rapamycin inhibits the kainic acid-induced expression of multiple functionally heterogeneous genes. We further focused on engulfment and cell motility 1 (Elmo1), which is a modulator of actin dynamics and therefore could contribute to pathological rewiring of neuronal circuits during epileptogenesis. We showed that prolonged overexpression of Elmo1 in cultured hippocampal neurons increased axonal growth, decreased dendritic spine density, and affected their shape. In conclusion, data presented herein show that increased mTORC1 activity in response to kainic acid has no global effect on gene expression. Instead, our findings suggest that mTORC1 inhibition may affect development of epilepsy, by modulating expression of specific subset of genes, including Elmo1, and point to a potential role for Elmo1 in morphological changes that accompany epileptogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Hipocampo/citología , Ácido Kaínico/farmacología , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Análisis por Conglomerados , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Neuronas/efectos de los fármacos , Ratas Wistar , Sirolimus/farmacología , Transcripción Genética/efectos de los fármacos
12.
Acta Neuropathol Commun ; 3: 48, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26220190

RESUMEN

INTRODUCTION: Tuberous sclerosis complex (TSC) is a genetic disease resulting from mutation in TSC1 or TSC2 and subsequent hyperactivation of mammalian Target of Rapamycin (mTOR). Common TSC features include brain lesions, such as cortical tubers and subependymal giant cell astrocytomas (SEGAs). However, the current treatment with mTOR inhibitors has critical limitations. We aimed to identify new targets for TSC pharmacotherapy. RESULTS: The results of our shRNA screen point to glutamate-cysteine ligase catalytic subunit (GCLC), a key enzyme in glutathione synthesis, as a contributor to TSC-related phenotype. GCLC inhibition increased cellular stress and reduced mTOR hyperactivity in TSC2-depleted neurons and SEGA-derived cells. Moreover, patients' brain tubers showed elevated GCLC and stress markers expression. Finally, GCLC inhibition led to growth arrest and death of SEGA-derived cells. CONCLUSIONS: We describe GCLC as a part of redox adaptation in TSC, needed for overgrowth and survival of mutant cells, and provide a potential novel target for SEGA treatment.


Asunto(s)
Encéfalo/patología , Glutamato-Cisteína Ligasa/metabolismo , Neuronas/metabolismo , Esclerosis Tuberosa/patología , Adolescente , Animales , Butionina Sulfoximina/farmacología , Células COS , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Niño , Chlorocebus aethiops , Inhibidores Enzimáticos/farmacología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunosupresores/farmacología , Masculino , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Adulto Joven
13.
PLoS One ; 8(5): e64455, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23724051

RESUMEN

Mammalian target of rapamycin (mTOR) is a protein kinase that senses nutrient availability, trophic factors support, cellular energy level, cellular stress, and neurotransmitters and adjusts cellular metabolism accordingly. Adequate mTOR activity is needed for development as well as proper physiology of mature neurons. Consequently, changes in mTOR activity are often observed in neuropathology. Recently, several groups reported that seizures increase mammalian target of rapamycin (mTOR) kinase activity, and such increased activity in genetic models can contribute to spontaneous seizures. However, the current knowledge about the spatiotemporal pattern of mTOR activation induced by proconvulsive agents is rather rudimentary. Also consequences of insufficient mTOR activity on a status epilepticus are poorly understood. Here, we systematically investigated these two issues. We showed that mTOR signaling was activated by kainic acid (KA)-induced status epilepticus through several brain areas, including the hippocampus and cortex as well as revealed two waves of mTOR activation: an early wave (2 h) that occurs in neurons and a late wave that predominantly occurs in astrocytes. Unexpectedly, we found that pretreatment with rapamycin, a potent mTOR inhibitor, gradually (i) sensitized animals to KA treatment and (ii) induced gross anatomical changes in the brain.


Asunto(s)
Encéfalo/patología , Sirolimus/uso terapéutico , Análisis Espacio-Temporal , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Muerte Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/enzimología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Ácido Kaínico , Masculino , Neuronas/efectos de los fármacos , Neuronas/enzimología , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Ratas , Ratas Wistar , Proteína S6 Ribosómica/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación , Sirolimus/farmacología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
14.
Biochim Biophys Acta ; 1834(7): 1434-48, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23277194

RESUMEN

Mammalian target of rapamycin (mTOR) is a serine-threonine kinase involved in almost every aspect of mammalian cell function. This kinase was initially believed to control protein translation in response to amino acids and trophic factors, and this function has become a canonical role for mTOR. However, mTOR can form two separate protein complexes (mTORCs). Recent advances clearly demonstrate that both mTORCs can respond to various stimuli and change myriad cellular processes. Therefore, our current view of the cellular roles of TORCs has rapidly expanded and cannot be fully explained without appreciating recent findings about the new modes of mTOR regulation and identification of non-canonical effectors of mTOR that contribute to transcription, cytoskeleton dynamics, and membrane trafficking. This review discusses the molecular details of these newly discovered non-canonical functions that allow mTORCs to control the cellular environment at multiple levels. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).


Asunto(s)
Fenómenos Fisiológicos Celulares/fisiología , Biosíntesis de Proteínas , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Núcleo Celular/metabolismo , Microambiente Celular/fisiología , Humanos , Lisosomas/metabolismo , Modelos Biológicos
15.
Proc Natl Acad Sci U S A ; 109(42): 17093-8, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23027931

RESUMEN

The memory of fear extinction is context dependent: fear that is suppressed in one context readily renews in another. Understanding of the underlying neuronal circuits is, therefore, of considerable clinical relevance for anxiety disorders. Prefrontal cortical and hippocampal inputs to the amygdala have recently been shown to regulate the retrieval of fear memories, but the cellular organization of these projections remains unclear. By using anterograde tracing in a transgenic rat in which neurons express a dendritically-targeted PSD-95:Venus fusion protein under the control of a c-fos promoter, we found that, during the retrieval of extinction memory, the dominant input to active neurons in the lateral amygdala was from the infralimbic cortex, whereas the retrieval of fear memory was associated with greater hippocampal and prelimbic inputs. This pattern of retrieval-related afferent input was absent in the central nucleus of the amygdala. Our data show functional anatomy of neural circuits regulating fear and extinction, providing a framework for therapeutic manipulations of these circuits.


Asunto(s)
Amígdala del Cerebelo/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Sistema Límbico/fisiología , Memoria/fisiología , Vías Nerviosas/anatomía & histología , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Varianza , Animales , Proteínas Bacterianas/metabolismo , Condicionamiento Psicológico , Cartilla de ADN/genética , Homólogo 4 de la Proteína Discs Large , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Luminiscentes/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Vías Nerviosas/fisiología , Ratas , Ratas Transgénicas , Grabación en Video
16.
BMC Neurosci ; 10: 144, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19961582

RESUMEN

BACKGROUND: It has been postulated that exercise-induced activation of brain-derived neurotrophic factor (BDNF) may account for improvement of stepping ability in animals after complete spinal cord transection. As we have shown previously, treadmill locomotor exercise leads to up-regulation of BDNF protein and mRNA in the entire neuronal network of intact spinal cord. The questions arise: (i) how the treadmill locomotor training, supplemented with tail stimulation, affects the expression of molecular correlates of synaptic plasticity in spinal rats, and (ii) if a response is related to BDNF protein level and distribution. We investigated the effect of training in rats spinalized at low thoracic segments on the level and distribution of BDNF immunoreactivity (IR) in ventral quadrants of the lumbar segments, in conjunction with markers of presynaptic terminals, synaptophysin and synaptic zinc. RESULTS: Training improved hindlimb stepping in spinal animals evaluated with modified Basso-Beattie-Bresnahan scale. Grades of spinal trained animals ranged between 5 and 11, whereas those of spinal were between 2 and 4. Functional improvement was associated with changes in presynaptic markers and BDNF distribution. Six weeks after transection, synaptophysin IR was reduced by 18% around the large neurons of lamina IX and training elevated its expression by over 30%. The level of synaptic zinc staining in the ventral horn was unaltered, whereas in ventral funiculi it was decreased by 26% postlesion and tended to normalize after the training. Overall BDNF IR levels in the ventral horn, which were higher by 22% postlesion, were unchanged after the training. However, training modified distribution of BDNF in the processes with its predominance in the longer and thicker ones. It also caused selective up-regulation of BDNF in two classes of cells (soma ranging between 100-400 microm2 and over 1000 microm2) of the ventrolateral and laterodorsal motor nuclei. CONCLUSION: Our results show that it is not BDNF deficit that determines lack of functional improvement in spinal animals. They indicate selectivity of up-regulation of BDNF in distinct subpopulations of cells in the motor nuclei which leads to changes of innervation targeting motoneurons, tuned up by locomotor activity as indicated by a region-specific increase of presynaptic markers.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Terapia por Ejercicio , Condicionamiento Físico Animal/métodos , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Médula Espinal/metabolismo , Sinapsis/metabolismo , Animales , Biomarcadores/metabolismo , Prueba de Esfuerzo , Técnica del Anticuerpo Fluorescente/métodos , Región Lumbosacra , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Movimiento , Terminales Presinápticos/metabolismo , Ratas , Ratas Wistar , Traumatismos de la Médula Espinal/patología , Sinaptofisina/metabolismo , Distribución Tisular , Zinc/metabolismo
17.
Acta Neurobiol Exp (Wars) ; 68(2): 334-46, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18511965

RESUMEN

Injury to the mature central nervous system (CNS) induces a series of transient changes leading not only to death of neurons, but also to spontaneous rearrangement of the affected network. One of such pro plastic events, detected following injury, is an increased level of neurotrophins. Neurotrophins are a family of proteins involved in survival and outgrowth processes. The other one, more difficult to observe, is a change in the complexity of the dendritic tree, causing arborization or pruning, depending on many circumstances: i.e. lesion etiology. Subsequent therapies like enriched environment or locomotor exercise bring about a functional improvement, which was found to further increase the neurotrophin level and induced additional arborization of dendrites. Another important consequence of damage to CNS connections is deafferentation, shown to induce a down regulation of outgrowth inhibitors. Their suppression in turn may facilitate dendritic plasticity. Taken together, these factors may contribute to enhanced plasticity in the injured mature CNS. Thus the proper use of endogenously increased plastic potential seems to be important for design and optimizing therapeutic strategies. Further investigation of mechanisms involved in switching on plasticity may help to improve on existing therapies and find new ways to obtain better recovery following injury.


Asunto(s)
Sistema Nervioso Central , Dendritas/fisiología , Plasticidad Neuronal/fisiología , Neuronas/patología , Animales , Sistema Nervioso Central/citología , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/fisiología
18.
Eur J Neurosci ; 25(8): 2425-44, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17445239

RESUMEN

Previous evidence indicates that locomotor exercise is a powerful means of increasing brain-derived neurotrophic factor (BDNF) and its signal transduction receptor TrkB mRNA levels, immunolabeling intensity and number of BDNF- and TrkB-immunopositive cells in the spinal cord of adult rats but the contribution of specific cell types to changes resulting from long-term activity is unknown. As changes in BDNF protein distribution due to systemic stimuli may reflect either its in-situ synthesis or its translocation from other sources, we investigated where BDNF and TrkB mRNA are expressed in the spinal lumbar segments. We report on the cell types defined by size, BDNF mRNA levels and number of cells with TrkB transcripts in sedentary and exercised animals following 28 days of treadmill walking. In the majority of cells, exercise increased perikaryonal levels of BDNF mRNA but did not affect TrkB transcript levels. Bidirectional changes in a number of TrkB mRNA-expressing cells occurred in small groups of ventral horn neurons. An increase in BDNF transcripts was translated into changes in pro-BDNF and BDNF levels. A 7-day walking regimen increased BDNF protein levels similarly to 28-day treadmill walking. Our observations indicate that long- and short-term locomotor activity of moderate intensity produce stimuli sufficient to recruit a majority of spinal cells to increased BDNF synthesis, suggesting that continuous tuning of pro-BDNF and BDNF levels permits spinal networks to undergo trophic modulation not requiring changes in TrkB mRNA supply.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Locomoción , Condicionamiento Físico Animal , Precursores de Proteínas/metabolismo , Receptor trkB/metabolismo , Médula Espinal/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Hibridación in Situ , Vértebras Lumbares , Precursores de Proteínas/genética , Distribución Aleatoria , Ratas , Ratas Wistar , Receptor trkB/genética , Médula Espinal/citología
19.
Acta Neurobiol Exp (Wars) ; 65(2): 177-82, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15960303

RESUMEN

Locomotor exercise increases neurotrophin BDNF and its receptor TrkBFL expression in the lumbar spinal cord. Involvement of BDNF/TrkBFL in synaptic transmission raises the questions which intracellular compartments are involved in this upregulation and whether exercise leads to redistribution of these proteins related to the duration of exercise. We have investigated the influence of short-term (7 days) locomotor exercise (ST) on intracellular distribution of BDNF and TrkBFL in the rat lumbar spinal cord comparing it with the effects of long-term (28 days) exercise (LT) described earlier. Immunofluorescence (IF) of proteins was analyzed with confocal microscopy. ST exercise caused a redistribution of perikaryonal BDNF IF toward periphery resulting in an increase of dendritic signal. In contrast to an enhancement of perikaryonal BDNF staining following LT, no increase of BDNF IF in cell bodies was observed after ST. An increase of TrkBFL IF in oligodendrocytes was consistent with that caused by LT. The fibers of TrkBFL IF oligodendrocytes surrounding the largest neurons were in close apposition to neuronal membrane. We propose that ST exercise causes (1) BDNF translocation to dendrites and/or local dendritic synthesis to serve increased synaptic activity (2) sensitization of oligodendroglia to BDNF mediated responses.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Condicionamiento Físico Animal/fisiología , Receptor trkB/metabolismo , Médula Espinal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Dendritas/efectos de los fármacos , Técnica del Anticuerpo Fluorescente/métodos , Región Lumbosacra , Masculino , Microscopía Confocal/métodos , Neuronas/metabolismo , Oligodendroglía/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Wistar , Médula Espinal/citología , Factores de Tiempo
20.
Brain Res ; 1006(2): 133-49, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15051517

RESUMEN

The hypothesis that devascularization of somatosensory and motor cortex causes apoptosis in infarcted regions and in the linked thalamic nuclei was evaluated. To unravel whether Bcl-related proteins, known to regulate apoptosis, participate in neuronal and glial responses to devascularization, we analyzed immunohistochemically the distribution and intensity of staining of Bcl-2 and Bax proteins at different time points after lesion. Both early (up to 6 h) and late (1-7 days) responses were studied. Devascularization led to rapid (within hours) apoptosis in the cortex and to a delayed (within 3-7 days) apoptosis in thalamic nuclei. In control groups, Bcl-2 and Bax immunoreactivity (IR) was detected in neurons and oligodendrocytes but not in astrocytes or microglia. Following devascularization, Bcl-2 IR and Bax IR increased in neurons before the onset of the apoptosis. In the ischemic focus, the increase reached maximal values 3 h after the lesion. The increase was of slower onset in the penumbra zone (24 h and after), a region in which both proteins were induced in astrocytes also. The change of Bax IR intensity exceeded four times that of Bcl-2 at all time points investigated, indicating a diminution of Bcl-2/Bax ratio that may direct neurons to apoptotic pathway. In numerous neurons, an increase of IR in the cytoplasm was accompanied by induction of nuclear staining. No changes of Bcl-2 and Bax IR were found in thalamic nuclei. Our results point to different mechanisms underlying apoptosis of cortical and thalamic neurons. Nuclear appearance of Bcl-2 and Bax suggests they possess regulatory role of gene expression changes triggered by cortical infarct.


Asunto(s)
Corteza Cerebral/metabolismo , Ataque Isquémico Transitorio/metabolismo , Neocórtex/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Apoptosis/fisiología , Recuento de Células/métodos , Corteza Cerebral/lesiones , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica/métodos , Etiquetado Corte-Fin in Situ/métodos , Ataque Isquémico Transitorio/patología , Masculino , Neocórtex/citología , Neocórtex/patología , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Fosfopiruvato Hidratasa/metabolismo , Proteínas/metabolismo , Ratas , Ratas Wistar , Coloración y Etiquetado/métodos , Tálamo/citología , Tálamo/metabolismo , Tálamo/patología , Factores de Tiempo , Proteína X Asociada a bcl-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA