Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(8): e0202402, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30148852

RESUMEN

The occurrence of protein synthesis errors (mistranslation) above the typical mean mistranslation level of 10-4 is mostly deleterious to yeast, zebrafish and mammal cells. Previous yeast studies have shown that mistranslation affects fitness and deregulates genes related to lipid metabolism, but there is no experimental proof that such errors alter yeast lipid profiles. We engineered yeast strains to misincorporate serine at alanine and glycine sites on a global scale and evaluated the putative effects on the lipidome. Lipids from whole cells were extracted and analysed by thin layer chromatography (TLC), liquid chromatography-mass spectrometry(LC-MS) and gas chromatography (GC). Oxidative damage, fatty acid desaturation and membrane fluidity changes were screened to identify putative alterations in lipid profiles in both logarithmic (fermentative) and post-diauxic shift (respiratory) phases. There were alterations in several lipid classes, namely lyso-phosphatidylcholine, phosphatidic acid, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and triglyceride, and in the fatty acid profiles, namely C16:1, C16:0, C18:1 and C18:0. Overall, the relative content of lipid species with saturated FA increased in detriment of those with unsaturated fatty acids. The expression of the OLE1 mRNA was deregulated, but phospholipid fluidity changes were not observed. These data expand current knowledge of mistranslation biology and highlight its putative roles in human diseases.


Asunto(s)
Ácidos Grasos/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Estearoil-CoA Desaturasa/biosíntesis , Ácidos Grasos/genética , Saccharomyces cerevisiae/genética , Estearoil-CoA Desaturasa/genética
2.
J Cell Physiol ; 231(12): 2639-51, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26946329

RESUMEN

Occupational exposure to low molecular weight reactive chemicals often leads to development of allergic reactions such as allergic contact dermatitis and respiratory allergies. Further insights into the interaction of these chemicals with physiopathological relevant cellular models might provide the foundations for novel non-animal approaches to safety assessment. In this work we used the human THP-1 cell line to determine phospholipidome changes induced by the skin sensitizer 1-fluoro-2,4-dinitrobenzene (DNFB), the respiratory allergen hexamethylene diisocyanate (HDI), and the irritant methyl salicylate (MESA). We detected that these chemicals differently induce lipid peroxidation and modulate THP-1 IL-1ß, IL-12B, IL-8, CD86, and HMOX1 transcription. Decreased phosphatidylethanolamine content was detected in cells exposed to MESA, while profound alterations in the relative abundance of cardiolipin species were observed in cells exposed to DNFB. All chemicals tested induced a decrease in the relative abundance of plasmanyl phosphatidylcholine species PC (O-16:0e/18:1) and phosphatidylinositol species PI (34:1), while increasing PI (38:4). An increased abundance of oleic acid was observed in the phospholipids of cells exposed to DNFB while a decreased abundance of palmitic acid was detected in cells treated with MESA or DNFB. We conclude that both specific and common alterations at phospholipidome levels are triggered by the different chemicals, while not allowing a complete distinction between them using a Canonical Analysis of Principal Coordinates (CAP). The common effects observed at phospholipids level with all the chemicals tested might be related to unspecific cell cytotoxic mechanisms that nevertheless may contribute to the elicitation of specific immune responses. J. Cell. Physiol. 231: 2639-2651, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Irritantes/farmacología , Fosfolípidos/metabolismo , Respiración/efectos de los fármacos , Piel/efectos de los fármacos , Línea Celular , Cromatografía Liquida , Cromatografía en Capa Delgada , Dinitrofluorobenceno/farmacología , Ácidos Grasos/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Isocianatos/farmacología , Peróxidos Lipídicos/metabolismo , Espectrometría de Masas , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Salicilatos/farmacología
3.
Arch Biochem Biophys ; 533(1-2): 33-41, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23474456

RESUMEN

Prevalence of skin inflammatory disorders has increased in recent years being estimated that 15-20% of the general population suffers from allergic contact dermatitis (ACD). Currently, the sensitizing potential of chemicals is assessed through animal tests; however growing ethical concerns and actual legislative framework impose the development of new alternative tests. Several genomic and proteomic approaches have already indicated some potential biomarkers, but lipidomic analysis was not so far explored with this purpose. A growing body of data suggests that phospholipids (PLs) play important roles in the modulation of immune responses. Therefore, this work focused in identifying changes in the PLs profile of human keratinocytes (KCs). For that, HaCaT cell line was exposed to two immune stimulators: the strong skin allergen 2,4-dinitrofluorobenzene (DNFB) and the non-allergenic stimulus LPS, and to the irritant benzalkonium chloride (BC), using off line TLC-ESI-MS, HPLC-MS and MS/MS. LPS and DNFB reduced PS class relative content, corroborating with consistent changes observed in its molecular profile. PC profile was also altered by immune stimulators. These findings suggest that PC and PS molecular species may discriminate immunogenic compounds from irritants. Analysis of such alterations may be therefore valuable in a future in vitro test platform for skin sensitization prediction.


Asunto(s)
Biología Computacional , Queratinocitos/citología , Fosfolípidos/metabolismo , Piel/citología , Piel/inmunología , Compuestos de Benzalconio/farmacología , Biomarcadores/metabolismo , Línea Celular , Dermatitis Alérgica por Contacto/inmunología , Dinitrofluorobenceno/farmacología , Humanos , Piel/metabolismo
4.
Anal Bioanal Chem ; 403(2): 457-71, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22402731

RESUMEN

Lipids are important in several biological processes because they act as signalling and regulating molecules, or, locally, as membrane components that modulate protein function. This paper reports the pattern of lipid composition of dendritic cells (DCs), a cell type of critical importance in inflammatory and immune responses. After activation by antigens, DCs undergo drastic phenotypical and functional transformations, in a process known as maturation. To better characterize this process, changes of lipid profile were evaluated by use of a lipidomic approach. As an experimental model of DCs, we used a foetal skin-derived dendritic cell line (FSDC) induced to mature by treatment with lipopolysaccharide (LPS). The results showed that LPS treatment increased ceramide (Cer) and phosphatidylcholine (PC) levels and reduced sphingomyelin (SM) and phosphatidylinositol (PI) content. Mass spectrometric analysis of a total lipid extract and of each class of lipids revealed that maturation promoted clear changes in ceramide profile. Quantitative analysis enabled identification of an increase in the total ceramide content and enhanced Cer at m/z 646.6, identified as Cer(d18:1/24:1), and at m/z 648.6, identified as Cer(d18:1/24:0). The pattern of change of these lipids give an extremely rich source of data for evaluating modulation of specific lipid species triggered during DC maturation.


Asunto(s)
Células Dendríticas/química , Células Dendríticas/metabolismo , Metabolismo de los Lípidos , Lípidos/análisis , Animales , Línea Celular , Células Dendríticas/citología , Espectrometría de Masas , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...