Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 59(6): 695-704.e5, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38359835

RESUMEN

Primordial germ cells (PGCs) are the earliest precursors of the gametes. During normal development, PGCs only give rise to oocytes or spermatozoa. However, PGCs can acquire pluripotency in vitro by forming embryonic germ (EG) cells and in vivo during teratocarcinogenesis. Classic embryological experiments directly assessed the potency of PGCs by injection into the pre-implantation embryo. As no contribution to embryos or adult mice was observed, PGCs have been described as unipotent. Here, we demonstrate that PGCs injected into 8-cell embryos can initially survive, divide, and contribute to the developing inner cell mass. Apoptosis-deficient PGCs exhibit improved survival in isolated epiblasts and can form naive pluripotent embryonic stem cell lines. However, contribution to the post-implantation embryo is limited, with no functional incorporation observed. In contrast, PGC-like cells show an extensive contribution to mid-gestation chimeras. We thus propose that PGC formation in vivo establishes a latent form of pluripotency that restricts chimera contribution.


Asunto(s)
Células Germinativas , Células Madre Pluripotentes , Masculino , Ratones , Animales , Células Germinativas/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , Espermatozoides , Estratos Germinativos , Diferenciación Celular
2.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38117256

RESUMEN

Mucosal-associated invariant T (MAIT) cells harbor evolutionarily conserved TCRs, suggesting important functions. As human and mouse MAIT functional programs appear distinct, the evolutionarily conserved MAIT functional features remain unidentified. Using species-specific tetramers coupled to single-cell RNA sequencing, we characterized MAIT cell development in six species spanning 110 million years of evolution. Cross-species analyses revealed conserved transcriptional events underlying MAIT cell maturation, marked by ZBTB16 induction in all species. MAIT cells in human, sheep, cattle, and opossum acquired a shared type-1/17 transcriptional program, reflecting ancestral features. This program was also acquired by human iNKT cells, indicating common differentiation for innate-like T cells. Distinct type-1 and type-17 MAIT subsets developed in rodents, including pet mice and genetically diverse mouse strains. However, MAIT cells further matured in mouse intestines to acquire a remarkably conserved program characterized by concomitant expression of type-1, type-17, cytotoxicity, and tissue-repair genes. Altogether, the study provides a unifying view of the transcriptional features of innate-like T cells across evolution.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Humanos , Bovinos , Animales , Ratones , Ovinos , Diferenciación Celular , Membrana Celular , Reparación por Escisión , Especificidad de la Especie , Mamíferos/genética
3.
Nat Commun ; 12(1): 6926, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862376

RESUMEN

Animals are essential genetic tools in scientific research and global resources in agriculture. In both arenas, a single sex is often required in surplus. The ethical and financial burden of producing and culling animals of the undesired sex is considerable. Using the mouse as a model, we develop a synthetic lethal, bicomponent CRISPR-Cas9 strategy that produces male- or female-only litters with one hundred percent efficiency. Strikingly, we observe a degree of litter size compensation relative to control matings, indicating that our system has the potential to increase the yield of the desired sex in comparison to standard breeding designs. The bicomponent system can also be repurposed to generate postnatal sex-specific phenotypes. Our approach, harnessing the technological applications of CRISPR-Cas9, may be applicable to other vertebrate species, and provides strides towards ethical improvements for laboratory research and agriculture.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Procesos de Determinación del Sexo/genética , Crianza de Animales Domésticos , Animales , Femenino , Tamaño de la Camada/genética , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Embarazo , Selección Artificial , Mutaciones Letales Sintéticas
4.
Nat Commun ; 11(1): 2598, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32451402

RESUMEN

DNA double-strand breaks (DSBs) are toxic to mammalian cells. However, during meiosis, more than 200 DSBs are generated deliberately, to ensure reciprocal recombination and orderly segregation of homologous chromosomes. If left unrepaired, meiotic DSBs can cause aneuploidy in gametes and compromise viability in offspring. Oocytes in which DSBs persist are therefore eliminated by the DNA-damage checkpoint. Here we show that the DNA-damage checkpoint eliminates oocytes via the pro-apoptotic BCL-2 pathway members Puma, Noxa and Bax. Deletion of these factors prevents oocyte elimination in recombination-repair mutants, even when the abundance of unresolved DSBs is high. Remarkably, surviving oocytes can extrude a polar body and be fertilised, despite chaotic chromosome segregation at the first meiotic division. Our findings raise the possibility that allelic variants of the BCL-2 pathway could influence the risk of embryonic aneuploidy.


Asunto(s)
Mutación , Oocitos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Reparación del ADN por Recombinación/genética , Aneuploidia , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Femenino , Fertilización , Genes bcl-2 , Meiosis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/citología , Proteínas de Unión a Fosfato/deficiencia , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/deficiencia , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
5.
Nat Commun ; 9(1): 2621, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976923

RESUMEN

Meiotic cells undergo genetic exchange between homologs through programmed DNA double-strand break (DSB) formation, recombination and synapsis. In mice, the DNA damage-regulated phosphatidylinositol-3-kinase-like kinase (PIKK) ATM regulates all of these processes. However, the meiotic functions of the PIKK ATR have remained elusive, because germline-specific depletion of this kinase is challenging. Here we uncover roles for ATR in male mouse prophase I progression. ATR deletion causes chromosome axis fragmentation and germ cell elimination at mid pachynema. This elimination cannot be rescued by deletion of ATM and the third DNA damage-regulated PIKK, PRKDC, consistent with the existence of a PIKK-independent surveillance mechanism in the mammalian germline. ATR is required for synapsis, in a manner genetically dissociable from DSB formation. ATR also regulates loading of recombinases RAD51 and DMC1 to DSBs and recombination focus dynamics on synapsed and asynapsed chromosomes. Our studies reveal ATR as a critical regulator of mouse meiosis.


Asunto(s)
Cromosomas de los Mamíferos/genética , Roturas del ADN de Doble Cadena , Meiosis/genética , Espermatocitos/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Emparejamiento Cromosómico/genética , Cromosomas de los Mamíferos/metabolismo , Hibridación Fluorescente in Situ , Masculino , Profase Meiótica I/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión a Fosfato , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
7.
Nature ; 550(7674): 67-73, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28953884

RESUMEN

Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.


Asunto(s)
Desarrollo Embrionario/genética , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Blastocisto/metabolismo , Sistemas CRISPR-Cas/genética , Linaje de la Célula , Ectodermo/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Estratos Germinativos/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Masculino , Ratones , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/deficiencia , Especificidad por Sustrato , Cigoto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA