Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 96(2): 85-94, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490368

RESUMEN

The prefrontal cortex (PFC) is well known as the executive center of the brain, combining internal states and goals to execute purposeful behavior, including social actions. With the advancement of tools for monitoring and manipulating neural activity in rodents, substantial progress has been made in understanding the specific cell types and neural circuits within the PFC that are essential for processing social cues and influencing social behaviors. Furthermore, combining these tools with translationally relevant behavioral paradigms has also provided novel insights into the PFC neural mechanisms that may contribute to social deficits in various psychiatric disorders. This review highlights findings from the past decade that have shed light on the PFC cell types and neural circuits that support social information processing and distinct aspects of social behavior, including social interactions, social memory, and social dominance. We also explore how the PFC contributes to social deficits in rodents induced by social isolation, social fear conditioning, and social status loss. These studies provide evidence that the PFC uses both overlapping and unique neural mechanisms to support distinct components of social cognition. Furthermore, specific PFC neural mechanisms drive social deficits induced by different contexts.


Asunto(s)
Corteza Prefrontal , Conducta Social , Animales , Corteza Prefrontal/fisiología , Corteza Prefrontal/fisiopatología , Roedores , Miedo/fisiología , Humanos , Aislamiento Social/psicología , Cognición Social , Interacción Social
2.
Front Syst Neurosci ; 17: 1173326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139472

RESUMEN

Anxiety disorders are the most common class of mental illness in the U.S., affecting 40 million individuals annually. Anxiety is an adaptive response to a stressful or unpredictable life event. Though evolutionarily thought to aid in survival, excess intensity or duration of anxiogenic response can lead to a plethora of adverse symptoms and cognitive dysfunction. A wealth of data has implicated the medial prefrontal cortex (mPFC) in the regulation of anxiety. Norepinephrine (NE) is a crucial neuromodulator of arousal and vigilance believed to be responsible for many of the symptoms of anxiety disorders. NE is synthesized in the locus coeruleus (LC), which sends major noradrenergic inputs to the mPFC. Given the unique properties of LC-mPFC connections and the heterogeneous subpopulation of prefrontal neurons known to be involved in regulating anxiety-like behaviors, NE likely modulates PFC function in a cell-type and circuit-specific manner. In working memory and stress response, NE follows an inverted-U model, where an overly high or low release of NE is associated with sub-optimal neural functioning. In contrast, based on current literature review of the individual contributions of NE and the PFC in anxiety disorders, we propose a model of NE level- and adrenergic receptor-dependent, circuit-specific NE-PFC modulation of anxiety disorders. Further, the advent of new techniques to measure NE in the PFC with unprecedented spatial and temporal resolution will significantly help us understand how NE modulates PFC function in anxiety disorders.

3.
Neuropsychopharmacology ; 48(9): 1267-1276, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37041206

RESUMEN

The cognitive symptoms of schizophrenia (SZ) present a significant clinical burden. They are treatment resistant and are the primary predictor of functional outcomes. Although the neural mechanisms underlying these deficits remain unclear, pathological GABAergic signaling likely plays an essential role. Perturbations with parvalbumin (PV)-expressing fast-spiking (FS) interneurons in the prefrontal cortex (PFC) are consistently found in post-mortem studies of patients with SZ, as well as in animal models. Our studies have shown decreased prefrontal synaptic inhibition and PV immunostaining, along with working memory and cognitive flexibility deficits in the MK801 model. To test the hypothesized association between PV cell perturbations and impaired cognition in SZ, we activated prefrontal PV cells by using an excitatory DREADD viral vector with a PV promoter to rescue the cognitive deficits induced by adolescent MK801 administration in female rats. We found that targeted pharmacogenetic upregulation of prefrontal PV interneuron activity can restore E/I balance and improve cognition in the MK801 model. Our findings support the hypothesis that the reduced PV cell activity levels disrupt GABA transmission, resulting in the disinhibition of excitatory pyramidal cells. This disinhibition leads to an elevated prefrontal excitation/inhibition (E/I) balance that could be causal for cognitive impairments. Our study provides novel insights into the causal role of PV cells in cognitive function and has clinical implications for understanding the pathophysiology and management of SZ.


Asunto(s)
Disfunción Cognitiva , Parvalbúminas , Ratas , Animales , Femenino , Parvalbúminas/metabolismo , Maleato de Dizocilpina/farmacología , Farmacogenética , Interneuronas/fisiología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Cognición , Corteza Prefrontal/metabolismo
4.
Neuroscientist ; 29(4): 488-505, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35086369

RESUMEN

Dysfunction in the prefrontal cortex is commonly implicated in anxiety disorders, but the mechanisms remain unclear. Approach-avoidance conflict tasks have been extensively used in animal research to better understand how changes in neural activity within the prefrontal cortex contribute to avoidance behaviors, which are believed to play a major role in the maintenance of anxiety disorders. In this article, we first review studies utilizing in vivo electrophysiology to reveal the relationship between changes in neural activity and avoidance behavior in rodents. We then review recent studies that take advantage of optical and genetic techniques to test the unique contribution of specific prefrontal cortex circuits and cell types to the control of anxiety-related avoidance behaviors. This new body of work reveals that behavior during approach-avoidance conflict is dynamically modulated by individual cell types, distinct neural pathways, and specific oscillatory frequencies. The integration of these different pathways, particularly as mediated by interactions between excitatory and inhibitory neurons, represents an exciting opportunity for the future of understanding anxiety.


Asunto(s)
Trastornos de Ansiedad , Ansiedad , Animales , Trastornos de Ansiedad/metabolismo , Corteza Prefrontal/fisiología , Reacción de Prevención/fisiología , Vías Nerviosas
5.
J Neurosci ; 42(2): 313-324, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34844989

RESUMEN

Neuronal activity in the prefrontal cortex (PFC) controls dominance hierarchies in groups of animals. Dopamine (DA) strongly modulates PFC activity mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs). Still, it is unclear how these two subpopulations of DA receptor-expressing neurons in the PFC regulate social dominance hierarchy. Here, we demonstrate distinct roles for prefrontal D1R- and D2R-expressing neurons in establishing social hierarchy, with D1R+ neurons determining dominance and D2R+ neurons for subordinate. Ex vivo whole-cell recordings revealed that the dominant status of male mice correlates with rectifying AMPAR transmission and stronger excitatory synaptic strength onto D1R+ neurons in PFC pyramidal neurons. In contrast, the submissive status is associated with higher neuronal excitability in D2R+ neurons. Moreover, simultaneous manipulations of synaptic efficacy of D1R+ neurons in dominant male mice and neuronal excitability of D2R+ neurons of their male subordinates switch their dominant-subordinate relationship. These results reveal that prefrontal D1R+ and D2R+ neurons have distinct but synergistic functions in the dominance hierarchy, and DA-mediated regulation of synaptic strengths acts as a powerful behavioral determinant of intermale social rank.SIGNIFICANCE STATEMENT Dominance hierarchy exists widely among animals who confront social conflict. Studies have indicated that social status largely relies on the neuronal activity in the PFC, but how dopamine influences social hierarchy via subpopulation of prefrontal neurons is still elusive. Here, we explore the cell type-specific role of dopamine receptor-expressing prefrontal neurons in the dominance-subordinate relationship. We found that the synaptic strength of D1 receptor-expressing neurons determines the dominant status, whereas hyperactive D2-expressing neurons are associated with the subordinate status. These findings highlight how social conflicts recruit distinct cortical microcircuits to drive different behaviors and reveal how D1- and D2-receptor enriched neurocircuits in the PFC establish a social hierarchy.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Predominio Social , Animales , Masculino , Ratones , Técnicas de Placa-Clamp
6.
Mol Psychiatry ; 27(1): 731-743, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34163013

RESUMEN

The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Esquizofrenia , Humanos , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética , Transducción de Señal
7.
Front Neural Circuits ; 15: 716408, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322002

RESUMEN

Prefrontal cortical GABAergic interneurons (INs) and their innervations are essential for the execution of complex behaviors such as working memory, social behavior, and fear expression. These behavior regulations are highly dependent on primary long-range afferents originating from the subcortical structures such as mediodorsal thalamus (MD), ventral hippocampus (vHPC), and basolateral amygdala (BLA). In turn, the regulatory effects of these inputs are mediated by activation of parvalbumin-expressing (PV) and/or somatostatin expressing (SST) INs within the prefrontal cortex (PFC). Here we review how each of these long-range afferents from the MD, vHPC, or BLA recruits a subset of the prefrontal interneuron population to exert precise control of specific PFC-dependent behaviors. Specifically, we first summarize the anatomical connections of different long-range inputs formed on prefrontal GABAergic INs, focusing on PV versus SST cells. Next, we elaborate on the role of prefrontal PV- and SST- INs in regulating MD afferents-mediated cognitive behaviors. We also examine how prefrontal PV- and SST- INs gate vHPC afferents in spatial working memory and fear expression. Finally, we discuss the possibility that prefrontal PV-INs mediate fear conditioning, predominantly driven by the BLA-mPFC pathway. This review will provide a broad view of how multiple long-range inputs converge on prefrontal interneurons to regulate complex behaviors and novel future directions to understand how PFC controls different behaviors.


Asunto(s)
Miedo/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Conducta Social , Vías Aferentes/fisiología , Animales , Humanos , Parvalbúminas/metabolismo , Somatostatina/metabolismo
8.
Front Behav Neurosci ; 15: 618397, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584217

RESUMEN

Abnormal social behavior, including both hypo- and hypersociability, is often observed in neurodevelopmental disorders such as autism spectrum disorders. However, the mechanisms associated with these two distinct social behavior abnormalities remain unknown. Postsynaptic density protein-95 (PSD-95) is a highly abundant scaffolding protein in the excitatory synapses and an essential regulator of synaptic maturation by binding to NMDA and AMPA receptors. The DLG4 gene encodes PSD-95, and it is a risk gene for hypersocial behavior. Interestingly, PSD-95 knockout mice exhibit hyposociability during adolescence but hypersociability in adulthood. The adolescent hyposociability is accompanied with an NMDAR hyperfunction in the medial prefrontal cortex (mPFC), an essential part of the social brain for control of sociability. The maturation of mPFC development is delayed until young adults. However, how PSD-95 deficiency affects the functional maturation of mPFC and its connection with other social brain regions remains uncharacterized. It is especially unknown how PSD-95 knockout drives the switch of social behavior from hypo- to hyper-sociability during adolescent-to-adult development. We propose an NMDAR-dependent developmental switch of hypo- to hyper-sociability. PSD-95 deficiency disrupts NMDAR-mediated synaptic connectivity of mPFC and social brain during development in an age- and pathway-specific manner. By utilizing the PSD-95 deficiency mouse, the mechanisms contributing to both hypo- and hyper-sociability can be studied in the same model. This will allow us to assess both local and long-range connectivity of mPFC and examine how they are involved in the distinct impairments in social behavior and how changes in these connections may mature over time.

10.
Biol Psychiatry ; 89(5): 521-531, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190846

RESUMEN

BACKGROUND: The medial prefrontal cortex (mPFC) is essential for social behaviors, yet whether and how it encodes social memory remains unclear. METHODS: We combined whole-cell patch recording, morphological analysis, optogenetic/chemogenetic manipulation, and the TRAP (targeted recombination in active populations) transgenic mouse tool to study the social-associated neural populations in the mPFC. RESULTS: Fos-TRAPed prefrontal social-associated neurons are excitatory pyramidal neurons with relatively small soma sizes and thin-tufted apical dendrite. These cells exhibit intrinsic firing features of dopamine D1 receptor-like neurons, show persisting firing pattern after social investigation, and project dense axons to nucleus accumbens. In behaving TRAP mice, selective inhibition of prefrontal social-associated neurons does not affect social investigation but does impair subsequent social recognition, whereas optogenetic reactivation of their projections to the nucleus accumbens enables recall of a previously encountered but "forgotten" mouse. Moreover, chemogenetic activation of mPFC-to-nucleus accumbens projections ameliorates MK-801-induced social memory impairments. CONCLUSIONS: Our results characterize the electrophysiological and morphological features of social-associated neurons in the mPFC and indicate that these Fos-labeled, social-activated prefrontal neurons are necessary and sufficient for social memory.


Asunto(s)
Memoria , Corteza Prefrontal , Animales , Ratones , Neuronas , Núcleo Accumbens , Conducta Social
11.
Front Behav Neurosci ; 14: 598469, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192373

RESUMEN

The paraventricular nucleus of the thalamus (PVT) has for decades been acknowledged to be an important node in the limbic system, but studies of emotional processing generally fail to incorporate it into their investigational framework. Here, we propose that the PVT should be considered as an integral part of the emotional processing network. Through its distinct subregions, cell populations, and connections with other limbic nuclei, the PVT participates in both major features of emotion: arousal and valence. The PVT, particularly the anterior PVT, can through its neuronal activity promote arousal, both as part of the sleep-wake cycle and in response to novel stimuli. It is also involved in reward, being both responsive to rewarding stimuli and itself affecting behavior reflecting reward, likely via specific populations of cells distributed throughout its subregions. Similarly, neuronal activity in the PVT contributes to depression-like behavior, through yet undefined subregions. The posterior PVT in particular demonstrates a role in anxiety-like behavior, generally promoting but also inhibiting this behavior. This subregion is also especially responsive to stressors, and it functions to suppress the stress response following chronic stress exposure. In addition to participating in unconditioned or primary emotional responses, the PVT also makes major contributions to conditioned emotional behavior. Neuronal activity in response to a reward-predictive cue can be detected throughout the PVT, and endogenous activity in the posterior PVT strongly predicts approach or seeking behavior. Similarly, neuronal activity during conditioned fear retrieval is detected in the posterior PVT and its activation facilitates the expression of conditioned fear. Much of this involvement of the PVT in arousal and valence has been shown to occur through the same general afferents and efferents, including connections with the hypothalamus, prelimbic and infralimbic cortices, nucleus accumbens, and amygdala, although a detailed functional map of the PVT circuits that control emotional responses remains to be delineated. Thus, while caveats exist and more work is required, the PVT, through its extensive connections with other prominent nuclei in the limbic system, appears to be an integral part of the emotional processing network.

12.
Physiol Behav ; 212: 112700, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31614159

RESUMEN

Binge eating disorder (BED), the most common eating disorder in the United States, is characterized by binge-type eating and is associated with higher body mass index and greater motivation for food. This disorder tends to first appear in late adolescence or young adulthood and is more common in women than men. While some animal models of BED have recapitulated both the overeating and the excessive body weight / fat of BED, very few have examined the motivational aspects of this disorder or utilized young females as subjects. In the present study, female Long-Evans rats, starting in late adolescence, were trained in operant chambers to self-administer the highly palatable Milk Chocolate Ensure Plus®, in 30-minute ("short access") or 6-hour ("long access") sessions, 5 days per week, over 6.5 weeks. For comparison, other subjects were provided with Ensure ad libitum or maintained on chow and water only. Both short and long access to Ensure led rats to develop binge-type eating, measured as greater 30-minute caloric intake than rats with ad libitum or chow access and as increasing 30-minute intake across weeks. Compared to those with short access, rats with long access demonstrated moderately increased motivation for Ensure (measured by progressive ratio testing) and, compared to those with only chow access, they eventually showed significant hyperphagia on Ensure access days and hypophagia on non-access days. Rats with long access also showed greater body weight/fat than those maintained on chow. These findings suggest that, while both short and long operant access to Ensure causes young female rats to meet the definition of binge-type eating, they lead to different phenotypes of this behavior, with long access promoting the development of a greater number of features found in clinical BED. Ultimately, both models may be useful in future studies aimed at identifying the neurobiological basis of binge eating.


Asunto(s)
Trastorno por Atracón/fisiopatología , Condicionamiento Operante/fisiología , Sacarosa en la Dieta/efectos adversos , Conducta Alimentaria/fisiología , Alimentos Formulados/efectos adversos , Alimentos , Autoadministración , Tejido Adiposo/fisiopatología , Animales , Peso Corporal/fisiología , Femenino , Motivación/fisiología , Fenotipo , Ratas , Esquema de Refuerzo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...