Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37772788

RESUMEN

The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery mediates the membrane fission step that completes cytokinetic abscission and separates dividing cells. Filaments composed of ESCRT-III subunits constrict membranes of the intercellular bridge midbody to the abscission point. These filaments also bind and recruit cofactors whose activities help execute abscission and/or delay abscission timing in response to mitotic errors via the NoCut/Abscission checkpoint. We previously showed that the ESCRT-III subunit IST1 binds the cysteine protease Calpain-7 (CAPN7) and that CAPN7 is required for both efficient abscission and NoCut checkpoint maintenance (Wenzel et al., 2022). Here, we report biochemical and crystallographic studies showing that the tandem microtubule-interacting and trafficking (MIT) domains of CAPN7 bind simultaneously to two distinct IST1 MIT interaction motifs. Structure-guided point mutations in either CAPN7 MIT domain disrupted IST1 binding in vitro and in cells, and depletion/rescue experiments showed that the CAPN7-IST1 interaction is required for (1) CAPN7 recruitment to midbodies, (2) efficient abscission, and (3) NoCut checkpoint arrest. CAPN7 proteolytic activity is also required for abscission and checkpoint maintenance. Hence, IST1 recruits CAPN7 to midbodies, where its proteolytic activity is required to regulate and complete abscission.


Asunto(s)
Calpaína , Complejos de Clasificación Endosomal Requeridos para el Transporte , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Calpaína/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Oncogénicas/metabolismo , Proteolisis , Citocinesis
2.
Elife ; 112022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36107470

RESUMEN

The 12 related human ESCRT-III proteins form filaments that constrict membranes and mediate fission, including during cytokinetic abscission. The C-terminal tails of polymerized ESCRT-III subunits also bind proteins that contain Microtubule-Interacting and Trafficking (MIT) domains. MIT domains can interact with ESCRT-III tails in many different ways to create a complex binding code that is used to recruit essential cofactors to sites of ESCRT activity. Here, we have comprehensively and quantitatively mapped the interactions between all known ESCRT-III tails and 19 recombinant human MIT domains. We measured 228 pairwise interactions, quantified 60 positive interactions, and discovered 18 previously unreported interactions. We also report the crystal structure of the SPASTIN MIT domain in complex with the IST1 C-terminal tail. Three MIT enzymes were studied in detail and shown to: (1) localize to cytokinetic midbody membrane bridges through interactions with their specific ESCRT-III binding partners (SPASTIN-IST1, KATNA1-CHMP3, and CAPN7-IST1), (2) function in abscission (SPASTIN, KATNA1, and CAPN7), and (3) function in the 'NoCut' abscission checkpoint (SPASTIN and CAPN7). Our studies define the human MIT-ESCRT-III interactome, identify new factors and activities required for cytokinetic abscission and its regulation, and provide a platform for analyzing ESCRT-III and MIT cofactor interactions in all ESCRT-mediated processes.


Asunto(s)
Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte , Citocinesis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Microtúbulos/metabolismo , Espastina/metabolismo
3.
Mol Biol Cell ; 33(13): ar117, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36044344

RESUMEN

Assembly of the nucleus following mitosis requires rapid and coordinate recruitment of diverse constituents to the inner nuclear membrane. We have identified an unexpected role for the nucleoporin Nup153 in promoting the continued addition of a subset of nuclear envelope (NE) proteins during initial expansion of nascent nuclei. Specifically, disrupting the function of Nup153 interferes with ongoing addition of B-type lamins, lamin B receptor, and SUN1 early in telophase, after the NE has initially enclosed chromatin. In contrast, effects on lamin A and SUN2 were minimal, pointing to differential requirements for the ongoing targeting of NE proteins. Further, distinct mistargeting phenotypes arose among the proteins that require Nup153 for NE targeting. Thus, disrupting the function of Nup153 in nuclear formation reveals several previously undescribed features important for establishing nuclear architecture: 1) a role for a nuclear basket constituent in ongoing recruitment of nuclear envelope components, 2) two functionally separable phases of NE formation in mammalian cells, and 3) distinct requirements of individual NE residents for continued targeting during the expansion phase of NE reformation.


Asunto(s)
Membrana Nuclear , Proteínas de Complejo Poro Nuclear , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Lamina Tipo A/metabolismo , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Mitosis , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo
4.
Elife ; 102021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34346309

RESUMEN

The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from mitotic interchromatin granules, transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission.


When a cell divides, it must first carefully duplicate its genetic information and package these copies into compartments housed in the two new cells. Errors in this process lead to genetic mistakes that trigger cancer or other harmful biological events. Quality control checks exist to catch errors before it is too late. This includes a final 'abscission' checkpoint right before the end of division, when the two new cells are still connected by a thin membrane bridge. If cells fail to pass this 'no cut' checkpoint, they delay severing their connection until the mistake is fixed. A group of proteins called ESCRTs is responsible for splitting the two cells apart if nothing is amiss. The abscission checkpoint blocks this process by altering certain proteins in the ESCRT complex, but exactly how this works is not yet clear. To find out more, Williams et al. imaged ESCRT factors in a new experimental system in which the abscission checkpoint is active in many cells. This showed that, in this context, certain ESCRT components were rerouted from the thread of membrane between the daughter cells to previously unknown structures, which Williams et al. named abscission checkpoint bodies. These entities also sequestered other factors that participate in the abscission checkpoint and factors that contribute to gene expression. These results are key to better understand how cells regulate their division; in particular, they provide a new framework to explore when this process goes wrong and contributes to cancer.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , División Celular/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación de la Expresión Génica/fisiología , Línea Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Humanos , Interferencia de ARN , ARN Interferente Pequeño , Análisis de la Célula Individual
5.
Mol Cell ; 79(2): 342-358.e12, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32645368

RESUMEN

Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.


Asunto(s)
Calcineurina/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Biotinilación , Centrosoma/metabolismo , Simulación por Computador , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Receptor Notch1/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
6.
J Cell Sci ; 130(19): 3347-3359, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28751496

RESUMEN

DNA double-strand breaks are typically repaired through either the high-fidelity process of homologous recombination (HR), in which BRCA1 plays a key role, or the more error-prone process of non-homologous end joining (NHEJ), which relies on 53BP1. The balance between NHEJ and HR depends, in part, on whether 53BP1 predominates in binding to damage sites, where it protects the DNA ends from resection. The nucleoporin Nup153 has been implicated in the DNA damage response, attributed to a role in promoting nuclear import of 53BP1. Here, we define a distinct requirement for Nup153 in 53BP1 intranuclear targeting to damage foci and report that Nup153 likely facilitates the role of another nucleoporin, Nup50, in 53BP1 targeting. The requirement for Nup153 and Nup50 in promoting 53BP1 recruitment to damage foci induced by either etoposide or olaparib is abrogated in cells deficient for BRCA1 or its partner BARD1, but not in cells deficient for BRCA2. Together, our results further highlight the antagonistic relationship between 53BP1 and BRCA1, and place Nup153 and Nup50 in a molecular pathway that regulates 53BP1 function by counteracting BRCA1-mediated events.


Asunto(s)
Proteína BRCA1/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína BRCA1/genética , Células HeLa , Humanos , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética
7.
Mol Biol Cell ; 26(12): 2217-26, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25904336

RESUMEN

Aurora B regulates cytokinesis timing and plays a central role in the abscission checkpoint. Cellular events monitored by this checkpoint are beginning to be elucidated, yet signaling pathways upstream of Aurora B in this context remain poorly understood. Here we reveal a new connection between postmitotic genome surveillance and cytokinetic abscission. Underreplicated DNA lesions are known to be transmitted through mitosis and protected in newly formed nuclei by recruitment of 53BP1 and other proteins until repair takes place. We find that this genome surveillance initiates before completion of cytokinesis. Elevating replication stress increases this postmitotic process and delays cytokinetic abscission by keeping the abscission checkpoint active. We further find that ATR activity in midbody-stage cells links postmitotic genome surveillance to abscission timing and that Chk1 integrates this and other signals upstream of Aurora B to regulate when the final step in the physical separation of daughter cells occurs.


Asunto(s)
Aurora Quinasa B/metabolismo , Cromosomas Humanos , Citocinesis/fisiología , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Quinasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Reparación del ADN , Humanos , Mitosis , Transducción de Señal
8.
Methods Mol Biol ; 931: 111-22, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23027000

RESUMEN

Real-time imaging coupled with a permeabilized cell system presents a very versatile platform to visualize the dynamic and intricate nature of nuclear envelope breakdown, one of the major morphological changes of mitosis. Here, we describe such a strategy in which the plasma membrane of cells expressing fluorescently tagged nucleoporin POM121 and Histone H2B is permeabilized with digitonin. These cells are then incubated with mitotic Xenopus egg extract to create conditions that recapitulate the major events of mitotic nuclear remodeling seen in live-cell imaging, providing the opportunity to probe mechanisms and pathways that coordinate nuclear disassembly.


Asunto(s)
Membrana Nuclear/metabolismo , Imagen de Lapso de Tiempo/métodos , Animales , Tampones (Química) , Técnicas de Cultivo de Célula , Extractos Celulares/aislamiento & purificación , Digitonina/química , Células HeLa , Humanos , Indicadores y Reactivos/química , Membrana Nuclear/ultraestructura , Oocitos/metabolismo , Oocitos/ultraestructura , Permeabilidad , Análisis de la Célula Individual/métodos , Xenopus
9.
J Biol Chem ; 287(46): 38515-22, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23007389

RESUMEN

Interactions between Nup50 and soluble transport factors underlie the efficiency of certain nucleocytoplasmic transport pathways. The platform on which these interactions take place is important to building a complete understanding of nucleocytoplasmic trafficking. Nup153 is the nucleoporin that provides this scaffold for Nup50. Here, we have delineated requirements for the interaction between Nup153 and Nup50, revealing a dual interface. An interaction between Nup50 and a region in the unique N-terminal region of Nup153 is critical for the nuclear pore localization of Nup50. A second site of interaction is at the distal tail of Nup153 and is dependent on importin α. Both of these interactions involve the N-terminal domain of Nup50. The configuration of the Nup153-Nup50 partnership suggests that the Nup153 scaffold provides not just a means of pore targeting for Nup50 but also serves to provide a local environment that facilitates bringing Nup50 and importin α together, as well as other soluble factors involved in transport. Consistent with this, disruption of the Nup153-Nup50 interface decreases efficiency of nuclear import.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas Nucleares/fisiología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Cinética , Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/química , Proteínas Nucleares/química , Conformación Proteica , Estructura Terciaria de Proteína , alfa Carioferinas/química
10.
Nucleus ; 2(4): 283-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21941107

RESUMEN

Cells divide and accurately inherit genomic and cellular content through synchronized changes in cellular organization and chromosome dynamics. Although DNA segregation, nuclear reformation, and cytokinesis/abscission temporally overlap, little is known about how these distinct events are coordinated to ensure accurate cell division. Recently, we found that disruption of postmitotic nuclear pore complex assembly, an essential aspect of the newly forming nuclear envelope, triggers an Aurora B-dependent delay in abscission. This delay is further characterized by mislocalized, aberrantly active Aurora B in the cytoplasm of midbody-stage cells. These results support a model in which an Aurora B-mediated abscission checkpoint provides surveillance of nuclear pore complex formation to ensure that elements of nuclear architecture are fully formed before daughter cells are physically separated. Here we discuss the process of nuclear pore complex assembly, describe potential mechanisms that may explain how this process could be coordinated with abscission, and postulate why such a checkpoint mechanism may exist.


Asunto(s)
Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa B , Aurora Quinasas , Puntos de Control del Ciclo Celular , División Celular , Citocinesis , Células HeLa , Humanos , Mitosis , Membrana Nuclear/metabolismo , Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo
11.
J Cell Biol ; 191(5): 923-31, 2010 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-21098116

RESUMEN

Correct assembly of nuclear pore complexes (NPCs), which directly and indirectly control nuclear environment and architecture, is vital to genomic regulation. We previously found that nucleoporin 153 (Nup 153) is required for timely progression through late mitosis. In this study, we report that disruption of Nup 153 function by either small interfering RNA-mediated depletion or expression of a dominant-interfering Nup 153 fragment results in dramatic mistargeting of the pore basket components Tpr and Nup 50 in midbody-stage cells. We find a concomitant appearance of aberrantly localized active Aurora B and an Aurora B-dependent delay in abscission. Depletion of Nup 50 is also sufficient to increase the number of midbody-stage cells and, likewise, triggers distinctive mislocalization of Aurora B. Together, our results suggest that defects in nuclear pore assembly, and specifically the basket structure, at this time of the cell cycle activate an Aurora B-mediated abscission checkpoint, thereby ensuring that daughter cells are generated only when fully formed NPCs are present.


Asunto(s)
Núcleo Celular/metabolismo , Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Aurora Quinasa B , Aurora Quinasas , Genes cdc , Células HeLa , Humanos , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/metabolismo , Transfección
12.
J Vis Exp ; (40)2010 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-20548280

RESUMEN

Changes in cellular organization and chromosome dynamics that occur during mitosis are tightly coordinated to ensure accurate inheritance of genomic and cellular content. Hallmark events of mitosis, such as chromosome movement, can be readily tracked on an individual cell basis using time-lapse fluorescence microscopy of mammalian cell lines expressing specific GFP-tagged proteins. In combination with RNAi-based depletion, this can be a powerful method for pinpointing the stage(s) of mitosis where defects occur after levels of a particular protein have been lowered. In this protocol, we present a basic method for assessing the effect of depleting a potential mitotic regulatory protein on the timing of mitosis. Cells are transfected with siRNA, placed in a stage-top incubation chamber, and imaged using an automated fluorescence microscope. We describe how to use software to set up a time-lapse experiment, how to process the image sequences to make either still-image montages or movies, and how to quantify and analyze the timing of mitotic stages using a cell-line expressing mCherry-tagged histone H2B. Finally, we discuss important considerations for designing a time-lapse experiment. This strategy is complementary to other approaches and offers the advantages of 1) sensitivity to changes in kinetics that might not be observed when looking at cells as a population and 2) analysis of mitosis without the need to synchronize the cell cycle using drug treatments. The visual information from such imaging experiments not only allows the sub-stages of mitosis to be assessed, but can also provide unexpected insight that would not be apparent from cell cycle analysis by FACS.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Mitosis/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Transfección/métodos , Histonas/genética , Humanos
13.
Mol Biol Cell ; 20(6): 1652-60, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19158386

RESUMEN

Accurate inheritance of genomic content during cell division is dependent on synchronized changes in cellular organization and chromosome dynamics. Elucidating how these events are coordinated is necessary for a complete understanding of cell proliferation. Previous in vitro studies have suggested that the nuclear pore protein Nup153 is a good candidate for participating in mitotic coordination. To decipher whether this is the case in mammalian somatic cells, we reduced the levels of Nup153 in HeLa cells and monitored consequences on cell growth. Reduction of Nup153 resulted in a delay during the late stages of mitosis accompanied by an increase in unresolved midbodies. Depletion of Nup153 to an even lower threshold led to a pronounced defect early in mitosis and an accumulation of cells with multilobed nuclei. Although global nucleocytoplasmic transport was not significantly altered under these depletion conditions, the FG-rich region of Nup153 was required to rescue defects in late mitosis. Thus, this motif may play a specialized role as cells exit mitosis. Rescue of the multilobed nuclei phenotype, in contrast, was independent of the FG-domain, revealing two separable roles for Nup153 in the execution of mitosis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Mitosis , Proteínas de Complejo Poro Nuclear/metabolismo , Supervivencia Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Eliminación de Gen , Células HeLa , Humanos , Cinetocoros/metabolismo , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Fenotipo , Transporte de Proteínas , Interferencia de ARN , Factores de Tiempo , Dedos de Zinc
14.
Dev Biol ; 291(1): 38-52, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16423343

RESUMEN

The Ovo gene family encodes a group of evolutionarily conserved transcription factors and includes members that reside downstream of key developmental signaling pathways such as Wg/Wnt and BMP/TGF-beta. In the current study, we explore the function of Ovol2, one of three Ovo paralogues in mice. We report that Ovol2 is expressed during early-mid embryogenesis, particularly in the inner cell mass at E3.5, in epiblast at E6.5, and at later stages in ectodermally derived tissues such as the rostral surface (epidermal) ectoderm. Embryos in which Ovol2 is ablated exhibit lethality by E10.5, prior to which they display severe defects including an open cranial neural tube. The neural defects are associated with improper Shh expression in the underlying rostral axial mesoderm and localized changes of neural marker expression along the dorsoventral axis, as well as with expanded cranial neural tissue and reduced cranial surface ectoderm culminating in a lateral shift of the neuroectoderm/surface ectoderm border. We propose that these defects reflect the involvement of Ovol2 in independent processes such as regionalized gene expression and neural/non-neural ectodermal patterning. Additionally, we present evidence that Ovol2 is required for efficient migration and survival of neural crest cells that arise at the neuroectoderm/surface ectoderm border, but not for their initial formation. Collectively, our studies indicate that Ovol2 is a key regulator of neural development and reveal a previously unexplored role for Ovo genes in mammalian embryogenesis.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Cresta Neural/embriología , Factores de Transcripción/metabolismo , Animales , Tipificación del Cuerpo , Ectodermo/metabolismo , Corazón/embriología , Proteínas Hedgehog , Mucosa Intestinal/metabolismo , Intestinos/embriología , Ratones , Ratones Mutantes , Cresta Neural/metabolismo , Defectos del Tubo Neural/embriología , Transactivadores/biosíntesis , Factores de Transcripción/genética , Proteína Wnt1/biosíntesis , Dedos de Zinc
15.
Development ; 132(6): 1463-73, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15716349

RESUMEN

Previous studies have shown that a targeted deletion of Ovol1 (previously known as movo1), encoding a member of the Ovo family of zinc-finger transcription factors, leads to germ cell degeneration and defective sperm production in adult mice. To explore the cellular and molecular mechanism of Ovol1 function, we have examined the mutant testis phenotype during the first wave of spermatogenesis in juvenile mice. Consistent with the detection of Ovol1 transcripts in pachytene spermatocytes of the meiotic prophase, Ovol1-deficient germ cells were defective in progressing through the pachytene stage. The pachytene arrest was accompanied by an inefficient exit from proliferation, increased apoptosis and an abnormal nuclear localization of the G2-M cell cycle regulator cyclin B1, but was not associated with apparent chromosomal or recombination defects. Transcriptional profiling and northern blot analysis revealed reduced expression of pachytene markers in the mutant, providing molecular evidence that pachytene differentiation was defective. In addition, the expression of Id2 (inhibitor of differentiation 2), a known regulator of spermatogenesis, was upregulated in Ovol1-deficient pachytene spermatocytes and repressed by Ovol1 in reporter assays. Taken together, our studies demonstrate a role for Ovol1 in regulating pachytene progression of male germ cells, and identify Id2 as a Ovol1 target.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fase Paquiteno/fisiología , Proteínas Represoras/metabolismo , Espermatogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Biomarcadores , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Genes Reporteros , Proteína 2 Inhibidora de la Diferenciación , Masculino , Ratones , Mutación , Fase Paquiteno/genética , Proteínas Represoras/genética , Espermatogénesis/genética , Testículo/metabolismo , Factores de Transcripción/genética
16.
Genomics ; 84(2): 398-405, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15234002

RESUMEN

Recent studies in Drosophila identified pygopus, which encodes a PHD finger protein, as an additional nuclear component of the canonical Wingless(Wg)/Wnt signaling pathway. In this study, we describe the molecular cloning and expression analysis of a mouse pygopus gene, mpygo2. mpygo2 transcripts were detected in almost all adult mouse tissues examined, whereas transcripts of another mouse pygopus gene, mpygo1, were detected only in heart tissue. Abundant mpygo2 transcripts were observed during embryogenesis in multiple developmental sites. Consistent with the demonstrated role of the Wnt-beta-catenin-LEF/TCF signaling pathway in mammalian skin development, mpygo2 expression was detected in the developing epidermis and hair follicles, which suggests that mpygo2 might mediate the effect of this signaling pathway in mouse skin.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Transducción de Señal , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Folículo Piloso/embriología , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Ratones , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Wnt
17.
Genomics ; 80(3): 319-25, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12213202

RESUMEN

The ovo gene family consists of evolutionarily conserved genes including those cloned from Caenorhabditis elegans, Drosophila melanogaster, mouse, and human. Here we report the isolation and characterization of mouse Ovol2 (also known as movol2 or movo2) and provide evidence supporting the existence of multiple Ovol2 transcripts. These transcripts are produced by alternative promoter usage and alternative splicing and encode long and short OVOL2 protein isoforms, whose sequences differ from those previously reported. Mouse and human OVOL2 genes are expressed in overlapping tissues including testis, where Ovol2 expression is developmentally regulated and correlates with the meiotic/postmeiotic stages of spermatogenesis. Mouse Ovol2 maps to chromosome 2 in a region containing blind-sterile (bs), a spontaneous mutation that causes spermatogenic defects and germ cell loss. No mutation has been detected in the coding region of Ovol2 from bs mice, but Ovol2 transcription was dramatically reduced in testes from these mice, suggesting that Ovol2 is expressed in male germ cells.


Asunto(s)
Mapeo Cromosómico , Proteínas de Unión al ADN/genética , Proteínas de Drosophila , Drosophila/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Ceguera/genética , Proteínas de Unión al ADN/biosíntesis , Humanos , Infertilidad/genética , Queratinocitos/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Testículo/metabolismo , Factores de Transcripción/biosíntesis
18.
Proc Natl Acad Sci U S A ; 99(9): 6064-9, 2002 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-11983900

RESUMEN

Drosophila ovo/svb (dovo) is required for epidermal cuticle/denticle differentiation and is genetically downstream of the wg signaling pathway. Similarly, a mouse homolog of dovo, movo1, is required for the proper formation of hair, a mammalian epidermal appendage. Here, we provide biochemical evidence that movo1 encodes a nuclear DNA binding protein (mOvo1a) that binds to DNA sequences similar to those that dOvo binds to, further supporting the notion that mOvo1a and dOvo are genetically and biochemically homologous proteins. Additionally, we show that the movo1 promoter is activated by the lymphoid enhancer factor 1 (LEF1)/beta-catenin complex, a transducer of wnt signaling. Collectively, our findings suggest that movo1 is a developmental target of wnt signaling during hair morphogenesis in mice, and that the wg/wnt-ovo link in epidermal appendage regulatory pathways has been conserved between mice and flies.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Células Epidérmicas , Transactivadores , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Diferenciación Celular , Núcleo Celular/metabolismo , Cromosomas/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Desoxirribonucleasa I/metabolismo , Epidermis/embriología , Immunoblotting , Inmunohistoquímica , Factor de Unión 1 al Potenciador Linfoide , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Transfección , beta Catenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...