Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur Phys J E Soft Matter ; 47(5): 36, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802588

RESUMEN

Fibrous networks such as collagen are common in biological systems. Recent theoretical and experimental efforts have shed light on the mechanics of single component networks. Most real biopolymer networks, however, are composites made of elements with different rigidity. For instance, the extracellular matrix in mammalian tissues consists of stiff collagen fibers in a background matrix of flexible polymers such as hyaluronic acid (HA). The interplay between different biopolymer components in such composite networks remains unclear. In this work, we use 2D coarse-grained models to study the nonlinear strain-stiffening behavior of composites. We introduce a local volume constraint to model the incompressibility of HA. We also perform rheology experiments on composites of collagen with HA. Theoretically and experimentally, we demonstrate that the linear shear modulus of composite networks can be increased by approximately an order of magnitude above the corresponding moduli of the pure components. Our model shows that this synergistic effect can be understood in terms of the local incompressibility of HA, which acts to suppress density fluctuations of the collagen matrix with which it is entangled.

2.
Phys Rev E ; 108(5-1): 054403, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115508

RESUMEN

At zero temperature, spring networks with connectivity below Maxwell's isostatic threshold undergo a mechanical phase transition from a floppy state at small strains to a rigid state for applied shear strain above a critical strain threshold. Disordered networks in the floppy mechanical regime can be stabilized by entropic effects at finite temperature. We develop a scaling theory for this mechanical phase transition at finite temperature, yielding relationships between various scaling exponents. Using Monte Carlo simulations, we verify these scaling relations and identify anomalous entropic elasticity with sublinear T dependence in the linear elastic regime. While our results are consistent with prior studies of phase behavior near the isostatic point, the present work also makes predictions relevant to the broad class of disordered thermal semiflexible polymer networks for which the connectivity generally lies far below the isostatic threshold.

3.
Phys Rev Lett ; 131(17): 178201, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955486

RESUMEN

Networks and dense suspensions frequently reside near a boundary between soft (or fluidlike) and rigid (or solidlike) regimes. Transitions between these regimes can be driven by changes in structure, density, or applied stress or strain. In general, near the onset or loss of rigidity in these systems, dissipation-limiting heterogeneous nonaffine rearrangements dominate the macroscopic viscoelastic response, giving rise to diverging relaxation times and power-law rheology. Here, we describe a simple quantitative relationship between nonaffinity and the excess viscosity. We test this nonaffinity-viscosity relationship computationally and demonstrate its rheological consequences in simulations of strained filament networks and dense suspensions. We also predict critical signatures in the rheology of semiflexible and stiff biopolymer networks near the strain stiffening transition.

4.
Phys Rev E ; 108(4-1): 044405, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978629

RESUMEN

Contractility in animal cells is often generated by molecular motors such as myosin, which require polar substrates for their function. Motivated by recent experimental evidence of motor-independent contractility, we propose a robust motor-free mechanism that can generate contraction in biopolymer networks without the need for substrate polarity. We show that contractility is a natural consequence of active binding-unbinding of crosslinkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers. We have extended our earlier work to discuss the motor-free contraction of viscoelastic biopolymer networks. We calculate the resulting contractile velocity using a microscopic model and show that it can be reduced to a simple coarse-grained model under certain limits. Our model may provide an explanation of recent reports of motor-independent contractility in cells. Our results also suggest a mechanism for generating contractile forces in synthetic active materials.


Asunto(s)
Modelos Biológicos , Miosinas , Animales , Biopolímeros , Contracción Muscular
5.
Soft Matter ; 19(42): 8124-8135, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37846933

RESUMEN

Networks of stiff fibers govern the elasticity of biological structures such as the extracellular matrix of collagen. These networks are known to stiffen nonlinearly under shear or extensional strain. Recently, it has been shown that such stiffening is governed by a strain-controlled athermal but critical phase transition, from a floppy phase below the critical strain to a rigid phase above the critical strain. While this phase transition has been extensively studied numerically and experimentally, a complete analytical theory for this transition remains elusive. Here, we present an effective medium theory (EMT) for this mechanical phase transition of fiber networks. We extend a previous EMT appropriate for linear elasticity to incorporate nonlinear effects via an anharmonic Hamiltonian. The mean-field predictions of this theory, including the critical exponents, scaling relations and non-affine fluctuations qualitatively agree with previous experimental and numerical results.

6.
Phys Rev Lett ; 130(8): 088101, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898114

RESUMEN

Networks of semiflexible or stiff polymers such as most biopolymers are known to deform inhomogeneously when sheared. The effects of such nonaffine deformation have been shown to be much stronger than for flexible polymers. To date, our understanding of nonaffinity in such systems is limited to simulations or specific 2D models of athermal fibers. Here, we present an effective medium theory for nonaffine deformation of semiflexible polymer and fiber networks, which is general to both 2D and 3D and in both thermal and athermal limits. The predictions of this model are in good agreement with both prior computational and experimental results for linear elasticity. Moreover, the framework we introduce can be extended to address nonlinear elasticity and network dynamics.

7.
J Phys Chem B ; 126(50): 10741-10749, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36475770

RESUMEN

Disordered networks of semiflexible filaments are common support structures in biology. Familiar examples include fibrous matrices in blood clots, bacterial biofilms, and essential components of cells and tissues of plants, animals, and fungi. Despite the ubiquity of these networks in biomaterials, we have only a limited understanding of the relationship between their structural features and their highly strain-sensitive mechanical properties. In this work, we perform simulations of three-dimensional networks produced by the irreversible formation of cross-links between linker-decorated semiflexible filaments. We characterize the structure of networks formed by a simple diffusion-dependent assembly process and measure their associated steady-state rheological features at finite temperature over a range of applied prestrains that encompass the strain-stiffening transition. We quantify the dependence of network connectivity on cross-linker availability and detail the associated connectivity dependence of both linear elasticity and nonlinear strain-stiffening behavior, drawing comparisons with prior experimental measurements of the cross-linker concentration-dependent elasticity of actin gels.


Asunto(s)
Actinas , Polímeros , Animales , Reología , Elasticidad , Actinas/química , Geles
8.
Nano Lett ; 22(12): 4725-4732, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35678828

RESUMEN

In this work, we investigate whether stiffening in compression is a feature of single cells and whether the intracellular polymer networks that comprise the cytoskeleton (all of which stiffen with increasing shear strain) stiffen or soften when subjected to compressive strains. We find that individual cells, such as fibroblasts, stiffen at physiologically relevant compressive strains, but genetic ablation of vimentin diminishes this effect. Further, we show that unlike networks of purified F-actin or microtubules, which soften in compression, vimentin intermediate filament networks stiffen in both compression and extension, and we present a theoretical model to explain this response based on the flexibility of vimentin filaments and their surface charge, which resists volume changes of the network under compression. These results provide a new framework by which to understand the mechanical responses of cells and point to a central role of intermediate filaments in response to compression.


Asunto(s)
Citoesqueleto , Filamentos Intermedios , Citoesqueleto de Actina , Actinas , Vimentina
9.
Phys Rev E ; 106(6): L062403, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671162

RESUMEN

Biopolymer networks are common in biological systems from the cytoskeleton of individual cells to collagen in the extracellular matrix. The mechanics of these systems under applied strain can be explained in some cases by a phase transition from soft to rigid states. For collagen networks, it has been shown that this transition is critical in nature and it is predicted to exhibit diverging fluctuations near a critical strain that depends on the network's connectivity and structure. Whereas prior work focused mostly on shear deformation that is more accessible experimentally, here we study the mechanics of such networks under an applied bulk or isotropic extension. We confirm that the bulk modulus of subisostatic fiber networks exhibits similar critical behavior as a function of bulk strain. We find different nonmean-field exponents for bulk as opposed to shear. We also confirm a similar hyperscaling relation to what was previously found for shear.

10.
Phys Rev Lett ; 127(15): 158001, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34678027

RESUMEN

The mechanical properties of soft materials can be probed on small length scales by microrheology. A common approach tracks fluctuations of micrometer-sized beads embedded in the medium to be characterized. This approach yields results that depend on probe size when the medium has structure on comparable length scales. Here, we introduce filament-based microrheology using high-aspect-ratio semiflexible filaments as probes. Such quasi-1D probes are much less invasive than beads due to their small cross sections. Moreover, by imaging transverse bending modes, we simultaneously determine the micromechanical response of the medium on multiple length scales corresponding to the mode wavelengths. We use semiflexible single-walled carbon nanotubes as probes that can be accurately and rapidly imaged based on their stable near-IR fluorescence. We find that the viscoelastic properties of sucrose, polyethylene oxide, and hyaluronic acid solutions measured in this way are in good agreement with those measured by conventional micro- and macrorheology.

11.
Phys Rev E ; 104(3-1): 034418, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654176

RESUMEN

A long-standing puzzle in the rheology of living cells is the origin of the experimentally observed long-time stress relaxation. The mechanics of the cell is largely dictated by the cytoskeleton, which is a biopolymer network consisting of transient crosslinkers, allowing for stress relaxation over time. Moreover, these networks are internally stressed due to the presence of molecular motors. In this work we propose a theoretical model that uses a mode-dependent mobility to describe the stress relaxation of such prestressed transient networks. Our theoretical predictions agree favorably with experimental data of reconstituted cytoskeletal networks and may provide an explanation for the slow stress relaxation observed in cells.

12.
Phys Rev E ; 104(2): L022402, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34525571

RESUMEN

When subject to applied strain, fiber networks exhibit nonlinear elastic stiffening. Recent theory and experiments have shown that this phenomenon is controlled by an underlying mechanical phase transition that is critical in nature. Growing simulation evidence points to non-mean-field behavior for this transition and a hyperscaling relation has been proposed to relate the corresponding critical exponents. Here, we report simulations on two distinct network structures in three dimensions. By performing a finite-size scaling analysis, we test hyperscaling and identify various critical exponents. From the apparent validity of hyperscaling, as well as the non-mean-field exponents we observe, our results suggest that the upper critical dimension for the strain-controlled phase transition is above three, in contrast to the jamming transition that represents another athermal, mechanical phase transition.

13.
Phys Rev Lett ; 127(10): 108101, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533352

RESUMEN

We investigate the rheological properties of interpenetrating networks reconstituted from the main cytoskeletal components: filamentous actin, microtubules, and vimentin intermediate filaments. The elastic modulus is determined largely by actin, with little contribution from either microtubules or vimentin. However, vimentin dramatically impacts the relaxation, with even small amounts significantly increasing the relaxation time of the interpenetrating network. This highly unusual decoupling between dissipation and elasticity may reflect weak attractive interactions between vimentin and actin networks.


Asunto(s)
Filamentos Intermedios/química , Modelos Químicos , Vimentina/química , Actinas/química , Actinas/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Células Eucariotas , Filamentos Intermedios/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Reología/métodos , Vimentina/metabolismo
14.
Soft Matter ; 17(20): 5122-5130, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33735362

RESUMEN

Carbon nanotubes (CNTs) are stiff, all-carbon macromolecules with diameters as small as one nanometer and few microns long. Solutions of CNTs in chlorosulfonic acid (CSA) follow the phase behavior of rigid rod polymers interacting via a repulsive potential and display a liquid crystalline phase at sufficiently high concentration. Here, we show that small-angle X-ray scattering and polarized light microscopy data can be combined to characterize quantitatively the morphology of liquid crystalline phases formed in CNT solutions at concentrations from 3 to 6.5% by volume. We find that upon increasing their concentration, CNTs self-assemble into a liquid crystalline phase with a pleated texture and with a large inter-particle spacing that could be indicative of a transition to higher-order liquid crystalline phases. We explain how thermal undulations of CNTs can enhance their electrostatic repulsion and increase their effective diameter by an order of magnitude. By calculating the critical concentration, where the mean amplitude of undulation of an unconstrained rod becomes comparable to the rod spacing, we find that thermal undulations start to affect steric forces at concentrations as low as the isotropic cloud point in CNT solutions.

15.
Phys Rev Lett ; 125(20): 208101, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258614

RESUMEN

Animal cells form contractile structures to promote various functions, from cell motility to cell division. Force generation in these structures is often due to molecular motors such as myosin that require polar substrates for their function. Here, we propose a motor-free mechanism that can generate contraction in biopolymer networks without the need for polarity. This mechanism is based on active binding and unbinding of cross-linkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers. We find that these two ingredients can generate steady state contraction via a nonthermal, ratchetlike process. We calculate the resulting force-velocity relation using both coarse-grained and microscopic models.


Asunto(s)
Modelos Biológicos , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Animales , Fenómenos Biomecánicos , Fenómenos Fisiológicos Celulares , Elasticidad , Fenómenos Mecánicos
16.
Proc Natl Acad Sci U S A ; 117(35): 21037-21044, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817547

RESUMEN

Tissues commonly consist of cells embedded within a fibrous biopolymer network. Whereas cell-free reconstituted biopolymer networks typically soften under applied uniaxial compression, various tissues, including liver, brain, and fat, have been observed to instead stiffen when compressed. The mechanism for this compression-stiffening effect is not yet clear. Here, we demonstrate that when a material composed of stiff inclusions embedded in a fibrous network is compressed, heterogeneous rearrangement of the inclusions can induce tension within the interstitial network, leading to a macroscopic crossover from an initial bending-dominated softening regime to a stretching-dominated stiffening regime, which occurs before and independently of jamming of the inclusions. Using a coarse-grained particle-network model, we first establish a phase diagram for compression-driven, stretching-dominated stress propagation and jamming in uniaxially compressed two- and three-dimensional systems. Then, we demonstrate that a more detailed computational model of stiff inclusions in a subisostatic semiflexible fiber network exhibits quantitative agreement with the predictions of our coarse-grained model as well as qualitative agreement with experiments.


Asunto(s)
Fuerza Compresiva/fisiología , Biología Computacional/métodos , Biopolímeros/química , Coloides/química , Simulación por Computador , Elasticidad , Cuerpos de Inclusión/fisiología , Modelos Químicos , Fenómenos Físicos , Presión , Estrés Mecánico
17.
Soft Matter ; 16(29): 6784-6793, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32638813

RESUMEN

Fibrous networks such as collagen are common in physiological systems. One important function of these networks is to provide mechanical stability for cells and tissues. At physiological levels of connectivity, such networks would be mechanically unstable with only central-force interactions. While networks can be stabilized by bending interactions, it has also been shown that they exhibit a critical transition from floppy to rigid as a function of applied strain. Beyond a certain strain threshold, it is predicted that underconstrained networks with only central-force interactions exhibit a discontinuity in the shear modulus. We study the finite-size scaling behavior of this transition and identify both the mechanical discontinuity and critical exponents in the thermodynamic limit. We find both non-mean-field behavior and evidence for a hyperscaling relation for the critical exponents, for which the network stiffness is analogous to the heat capacity for thermal phase transitions. Further evidence for this is also found in the self-averaging properties of fiber networks.


Asunto(s)
Colágeno , Transición de Fase , Termodinámica
18.
Soft Matter ; 15(31): 6300-6307, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31342050

RESUMEN

Networks of filamentous actin (F-actin) are important for the mechanics of most animal cells. These cytoskeletal networks are highly dynamic, with a variety of actin-associated proteins that control cross-linking, polymerization and force generation in the cytoskeleton. Inspired by recent rheological experiments on reconstituted solutions of dynamic actin filaments, we report a theoretical model that describes stress relaxation behavior of these solutions in the presence of severing proteins. We show that depending on the kinetic rates of assembly, disassembly, and severing, one can observe both length-dependent and length-independent relaxation behavior.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Modelos Biológicos
19.
Phys Rev E ; 99(4-1): 042412, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31108669

RESUMEN

The mechanics of disordered fibrous networks such as those that make up the extracellular matrix are strongly dependent on the local connectivity or coordination number. For biopolymer networks this coordination number is typically between 3 and 4. Such networks are sub-isostatic and linearly unstable to deformation with only central force interactions, but exhibit a mechanical phase transition between floppy and rigid states under strain. The introduction of weak bending interactions stabilizes these networks and suppresses the critical signatures of this transition. We show that applying external stress can also stabilize subisostatic networks with only tensile central force interactions, i.e., a ropelike potential. Moreover, we find that the linear shear modulus shows a power-law scaling with the external normal stress, with a non-mean-field exponent. For networks with finite bending rigidity, we find that the critical stain shifts to lower values under prestress.


Asunto(s)
Matriz Extracelular/metabolismo , Modelos Moleculares , Estrés Mecánico , Fenómenos Biomecánicos
20.
Phys Rev Lett ; 122(18): 188003, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144872

RESUMEN

As a function of connectivity, spring networks exhibit a critical transition between floppy and rigid phases at an isostatic threshold. For connectivity below this threshold, fiber networks were recently shown theoretically to exhibit a rigidity transition with corresponding critical signatures as a function of strain. Experimental collagen networks were also shown to be consistent with these predictions. We develop a scaling theory for this strain-controlled transition. Using a real-space renormalization approach, we determine relations between the critical exponents governing the transition, which we verify for the strain-controlled transition using numerical simulations of both triangular lattice-based and packing-derived fiber networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...