Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 19(1): 104, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805561

RESUMEN

BACKGROUND: Since its discovery, somatic hybridization has been used to overcome the sexual barriers between cultivated and wild species. A combination of two somatic cells might provide a novel set of features, often of agronomical importance. Here, we report a successful approach for production and selection of interspecific somatic hybrid plants between cultivated and wild carrot using dual-labelling of protoplasts and an early selection of fused cells via micromanipulator. Both subspecies used in this study are characterised by a very high regenerative ability in protoplast cultures. Thus, a precise and effective method of hybrid selection is essential to assure the development and regeneration of much less numerous heterokaryons in the post-fusion cell mixture. RESULTS: Electrofusion parameters, such as alternating current and direct current, were optimised for an efficient alignment of protoplasts and reversible membrane breakdown followed by a cell fusion. Four hundred twenty-nine cells emitting green-red fluorescence, identified as hybrids, were obtained. Co-culture with donor-derived protoplasts in the alginate feeder layer system stimulated re-synthesis of the cell wall and promoted cell divisions of fusants. Somatic embryogenesis occurred in hybrid-derived microcalli cultures, followed by plant regeneration. Regenerated hybrids produced yellowish storage roots and leaves of an intermediate shape between cultivated and wild subspecies. The intron length polymorphism analysis revealed that 123 of 124 regenerated plants were hybrids. CONCLUSIONS: The developed protocol for protoplast fusion and an early selection of hybrids may serve as an alternative to combining genomes and transferring nuclear or cytoplasmatic traits from wild Daucus species to cultivated carrot.

2.
Sci Rep ; 10(1): 18811, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139848

RESUMEN

Somatic hybridisation in the carrot, as in other plant species, enables the development of novel plants with unique characteristics. This process can be induced by the application of electric current to isolated protoplasts, but such electrofusion requires an effective hybrid cell identification method. This paper describes the non-toxic fluorescent protein (FP) tagging of protoplasts which allows discrimination of fusion components and identification of hybrids in real-time during electrofusion. One of four FPs: cyan (eCFP), green (sGFP), yellow (eYFP) or the mCherry variant of red FP (RFP), with a fused mitochondrial targeting sequence, was introduced to carrot cell lines of three varieties using Agrobacterium-mediated transformation. After selection, a set of carrot callus lines with either GFP, YFP or RFP-labelled mitochondria that showed stable fluorescence served as protoplast sources. Various combinations of direct current (DC) parameters on protoplast integrity and their ability to form hybrid cells were assessed during electrofusion. The protoplast response and hybrid cell formation depended on DC voltage and pulse time, and varied among protoplast sources. Heterofusants (GFP + RFP or YFP + RFP) were identified by detection of a dual-colour fluorescence. This approach enabled, for the first time, a comprehensive assessment of the carrot protoplast response to the applied electric field conditions as well as identification of the DC parameters suitable for hybrid formation, and an estimation of the electrofusion success rate by performing real-time observations of protoplast fluorescence.


Asunto(s)
Fusión Celular/métodos , Separación Celular/métodos , Daucus carota/citología , Electricidad , Células Híbridas , Hibridación Genética , Mitocondrias , Protoplastos , Agrobacterium , Línea Celular , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Proteína Fluorescente Roja
3.
Int J Mol Sci ; 20(21)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31690047

RESUMEN

Phytosulfokine-α (PSK), a peptidyl plant growth factor, has been recognized as a promising intercellular signaling molecule involved in cellular proliferation and dedifferentiation. It was shown that PSK stimulated and enhanced cell divisions in protoplast cultures of several species leading to callus and proembryogenic mass formation. Since PSK had been shown to cause an increase in efficiency of somatic embryogenesis, it was reasonable to check the distribution of selected chemical components of the cell walls during the protoplast regeneration process. So far, especially for the carrot, a model species for in vitro cultures, it has not been specified what pectic, arabinogalactan protein (AGP) and extensin epitopes are involved in the reconstruction of the wall in protoplast-derived cells. Even less is known about the correlation between wall regeneration and the presence of PSK during the protoplast culture. Three Daucus taxa, including the cultivated carrot, were analyzed during protoplast regeneration. Several antibodies directed against wall components (anti-pectin: LM19, LM20, anti-AGP: JIM4, JIM8, JIM13 and anti-extensin: JIM12) were used. The obtained results indicate a diverse response of the used Daucus taxa to PSK in terms of protoplast-derived cell development, and diversity in the chemical composition of the cell walls in the control and the PSK-treated cultures.


Asunto(s)
Pared Celular/efectos de los fármacos , Daucus carota/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Pared Celular/metabolismo , Daucus carota/citología , Pectinas/metabolismo , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...