Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 9855, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851935

RESUMEN

It is one of the most important needs to develop renewable, scalable and multifunctional methods for the fabrication of 3D carbon architectures. Even though a lot of methods have been developed to create porous and mechanically stable 3D scaffolds, the fabrication and control over the synthesis of such architectures still remain a challenge. Here, we used Magnetospirillum magneticum (AMB-1) bacteria as a bio-template to fabricate light-weight 3D solid structure of carbon nanotubes (CNTs) with interconnected porosity. The resulting porous scaffold showed good mechanical stability and large surface area because of the excellent pore interconnection and high porosity. Steered molecular dynamics simulations were used to quantify the interactions between nanotubes and AMB-1 via the cell surface protein MSP-1 and flagellin. The 3D CNTs-AMB1 nanocomposite scaffold is further demonstrated as a potential substrate for electrodes in supercapacitor applications.


Asunto(s)
Bacterias , Imagenología Tridimensional , Nanotubos de Carbono/ultraestructura , Bacterias/ultraestructura , Electroquímica , Fenómenos Mecánicos , Nanotecnología , Nanotubos de Carbono/química , Espectrometría Raman
2.
J Nanosci Nanotechnol ; 16(3): 2668-76, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27455687

RESUMEN

A novel design of a laboratory built axially rotating collector (ARC) having capability to align electrospun nanofibers have been described. A detailed morphological comparison of such nanofibers orientation and their geometry is done using scanning electron microscopy (SEM). For comparison various polymeric solutions were electrospun on conventional static collector as well as ARC. The average diameter of polyvinyl alcohol (PVA) nanofibers was found to be 250 nm while polycaprolactone (PCL) nanofibers were found to be within a range of 600-800 nm. Conducting nanoparticles such as graphene and multi-walled carbon nanotubes (MWNTs) mixed with polymer solutions shown to have a significant influence on the overall geometry of these nanofibers and their diameter distribution. It is evident from the SEM analysis that both graphene and MWNTs in polymer solution play a crucial role in achieving a uniform diameter of nanofibers. Lastly, the formation of the aligned nanofibers using ARC has been mathematically modeled and the electromagnetic field governing the process has been simulated.


Asunto(s)
Nanofibras , Microscopía Electrónica de Rastreo , Poliésteres/química , Alcohol Polivinílico/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-27295637

RESUMEN

Flagellum is a lash-like cellular appendage found in many single-celled living organisms. The flagellin protofilaments contain 11-helix dual turn structure in a single flagellum. Each flagellin consists of four sub-domains - two inner domains (D0, D1) and two outer domains (D2, D3). While inner domains predominantly consist of α-helices, the outer domains are primarily beta sheets with D3. In flagellum, the outermost sub-domain is the only one that is exposed to the native environment. This study focuses on the interactions of the residues of D3 of an R-type flagellin with 5nm long chiral (5,15) and arm-chair (12,12) single-walled carbon nanotubes (SWNT) using molecular dynamics simulation. It presents the interactive forces between the SWNT and the residues of D3 from the perspectives of size and chirality of the SWNT. It is found that the metallic (arm-chair) SWNT interacts the most with glycine and threonine residues through van der Waals and hydrophobic interactions, whereas the semiconducting (chiral) SWNT interacts largely with the area of protein devoid of glycine by van der Waals, hydrophobic interactions, and hydrogen bonding. This indicates a crucial role that glycine plays in distinguishing metallic from semiconducting SWNTs.


Asunto(s)
Flagelina/química , Flagelina/metabolismo , Nanotubos de Carbono/química , Glicina , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Estereoisomerismo
4.
ACS Appl Mater Interfaces ; 4(12): 7069-75, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23173615

RESUMEN

Understanding the interaction between graphene oxide (GO) and the biomolecules is fundamentally essential, especially for disease- and drug-related peptides and proteins. In this study, GO was found to strongly interact with amino acids (tryptophan and tyrosine), peptides (Alzheimer's disease related amyloid beta 1-40 and type 2 diabetes related human islet amyloid polypeptide), and proteins (drug-related bovine and human serum albumin) by fluorescence quenching, indicating GO was a universal quencher for tryptophan or tyrosine related peptides and proteins. The quenching mechanism between GO and tryptophan (Trp) or tyrosine (Tyr) was determined as mainly static quenching, combined with dynamic quenching (Förster resonance energy transfer). Different quenching efficiency between GO and Trp or Tyr at different pHs indicated the importance of electrostatic interaction during quenching. Hydrophobic interaction also participated in quenching, which was proved by the presence of nonionic amphiphilic copolymer Pluronic F127 (PF127) in GO dispersion. The strong hydrophobic interaction between GO and PF127 efficiently blocked the hydrophobic interaction between GO and Trp or Tyr, lowering the quenching efficiency.


Asunto(s)
Aminoácidos/análisis , Grafito/química , Óxidos/química , Péptidos/análisis , Proteínas/análisis , Espectrometría de Fluorescencia/métodos , Microscopía de Fuerza Atómica , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...