Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952183

RESUMEN

BACKGROUND AND PURPOSE: Pulmonary hypertension (PH) results from pulmonary vasculopathy, initially leading to a compensatory right ventricular (RV) hypertrophy, and eventually to RV failure. Hypoxia can trigger both pulmonary vasculopathy and RV failure. Therefore, we tested if myo-inositol trispyrophosphate (ITPP), which facilitates oxygen dissociation from haemoglobin, can relieve pulmonary vasculopathy and RV hypoxia, and eventually prevent RV failure and mortality in the rat model of monocrotaline-induced PH. EXPERIMENTAL APPROACH: Rats were injected with monocrotaline (PH) or saline (control) and received ITPP or placebo for 5 weeks. Serial echocardiograms were obtained to monitor the disease, pressure-volume loops were recorded and evaluated, myocardial pO2 was measured using a fluorescent probe, and histological and molecular analyses were conducted at the conclusion of the experiment. KEY RESULTS AND CONCLUSIONS: ITPP reduced PH-related mortality. It had no effect on progressive increase in pulmonary vascular resistance, yet significantly relieved intramyocardial RV hypoxia, which was associated with improvement of RV function and reduction of RV wall stress. ITPP also tended to prevent increased hypoxia inducible factor-1α expression in RV cardiac myocytes but did not affect RV capillary density. IMPLICATIONS: Our study suggests that strategies aimed at increasing oxygen delivery to hypoxic RV in PH could potentially be used as adjuncts to other therapies that target pulmonary vessels, thus increasing the ability of the RV to withstand increased afterload and reducing mortality. ITPP may be one such potential therapy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38641424

RESUMEN

ncRNA therapeutics can target either ncRNAs or conventional mRNA, offering both superior pharmacokinetics and selectivity to conventional therapies and addressing new, previously unexplored pathways. Although no ncRNA has yet been approved for the treatment of heart failure, in this review we present 5 most promising pathways and agents that are either in human clinical trials or offer great promise in the near future.

3.
Sci Rep ; 14(1): 3460, 2024 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342936

RESUMEN

The incidence of life-threatening ventricular arrhythmias, the most common cause of sudden cardiac death (SCD), depends largely on the arrhythmic substrate that develops in the myocardium during the aging process. There is a large deficit of comparative studies on the development of this substrate in both sexes, with a particular paucity of studies in females. To identify the substrates of arrhythmia, fibrosis, cardiomyocyte hypertrophy, mitochondrial density, oxidative stress, antioxidant defense and intracellular Ca2+ signaling in isolated cardiomyocytes were measured in the hearts of 3- and 24-month-old female and male rats. Arrhythmia susceptibility was assessed in ex vivo perfused hearts after exposure to isoproterenol (ISO) and hydrogen peroxide (H2O2). The number of ventricular premature beats (PVBs), ventricular tachycardia (VT) and ventricular fibrillation (VF) episodes, as well as intrinsic heart rate, QRS and QT duration, were measured in ECG signals recorded from the surfaces of the beating hearts. After ISO administration, VT/VFs were formed only in the hearts of males, mainly older ones. In contrast, H2O2 led to VT/VF formation in the hearts of rats of both sexes but much more frequently in older males. We identified several components of the arrhythmia substrate that develop in the myocardium during the aging process, including high spontaneous ryanodine receptor activity in cardiomyocytes, fibrosis of varying severity in different layers of the myocardium (nonheterogenic fibrosis), and high levels of oxidative stress as measured by nitrated tyrosine levels. All of these elements appeared at a much greater intensity in male individuals during the aging process. On the other hand, in aging females, antioxidant defense at the level of H2O2 detoxification, measured as glutathione peroxidase expression, was weaker than that in males of the same age. We showed that sex has a significant effect on the development of an arrhythmic substrate during aging. This substrate determines the incidence of life-threatening ventricular arrhythmias in the presence of additional stimuli with proarrhythmic potential, such as catecholamine stimulation or oxidative stress, which are constant elements in the pathomechanism of most cardiovascular diseases.


Asunto(s)
Antioxidantes , Taquicardia Ventricular , Femenino , Masculino , Ratas , Animales , Peróxido de Hidrógeno , Arritmias Cardíacas , Fibrilación Ventricular , Miocitos Cardíacos/metabolismo , Isoproterenol/farmacología , Fibrosis
4.
JACC Heart Fail ; 12(2): 235-247, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37140511

RESUMEN

Right ventricular (RV) function and eventually failure determine outcome in patients with pulmonary arterial hypertension (PAH). Initially, RV responds to an increased load caused by PAH with adaptive hypertrophy; however, eventually RV failure ensues. Unfortunately, it is unclear what causes the transition from compensated RV hypertrophy to decompensated RV failure. Moreover, at present, there are no therapies for RV failure; those for left ventricular (LV) failure are ineffective, and no therapies specifically targeting RV are available. Thus there is a clear need for understanding the biology of RV failure and differences in physiology and pathophysiology between RV and LV that can ultimately lead to development of such therapies. In this paper, we discuss RV adaptation and maladaptation in PAH, with a particular focus of oxygen delivery and hypoxia as the principal drivers of RV hypertrophy and failure, and attempt to pinpoint potential sites for therapy.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Humanos , Hipertensión Arterial Pulmonar/complicaciones , Hipertensión Pulmonar/etiología , Oxígeno , Hipertrofia Ventricular Derecha/complicaciones , Función Ventricular Derecha , Disfunción Ventricular Derecha/etiología
5.
Heart Rhythm ; 21(2): 206-212, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37972673

RESUMEN

The arrhythmogenic role of epicardial adipose tissue (EAT) in atrial arrhythmias is well established, but its effect on ventricular arrhythmias has been significantly less investigated. Since ventricular arrhythmias are thought to cause 75%-80% of cases of sudden cardiac death, this is not a trivial issue. We provide an overview of clinical data as well as experimental and molecular data linking EAT to ventricular arrhythmias, attempting to dissect possible mechanisms and indicate future directions of research and possible clinical implications. However, despite a wealth of data indicating the role of epicardial and intramyocardial fat in the induction and propagation of ventricular arrhythmias, unfortunately there is currently no direct evidence that indeed EAT triggers arrhythmia or can be a target for antiarrhythmic strategies.


Asunto(s)
Arritmias Cardíacas , Tejido Adiposo Epicárdico , Humanos , Antiarrítmicos/uso terapéutico , Muerte Súbita Cardíaca/etiología
6.
Cancers (Basel) ; 15(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37046852

RESUMEN

BACKGROUND: Multiple myeloma (MM) is associated with increased cardiovascular morbidity and mortality, while MM therapies also result in adverse cardiac effects. Endothelial dysfunction and impaired nitric oxide (NO) pathway is their possible mediator. OBJECTIVE: Since MM is associated with increased arginase expression, resulting in the consumption of ʟ-arginine, precursor for NO synthesis, our aim was to test if cardiotoxicity mediated by MM and MM therapeutic, bortezomib (a proteasome inhibitor), can be ameliorated by an arginase inhibitor through improved endothelial function. METHODS: We used a mouse Vĸ*MYC model of non-light chain MM. Cardiac function was assessed by echocardiography. RESULTS: MM resulted in progressive left ventricular (LV) systolic dysfunction, and bortezomib exacerbated this effect, leading to significant impairment of LV performance. An arginase inhibitor, OAT-1746, protected the heart against bortezomib- or MM-induced toxicity but did not completely prevent the effects of the MM+bortezomib combination. MM was associated with improved endothelial function (assessed as NO production) vs. healthy controls, while bortezomib did not affect it. OAT-1746 improved endothelial function only in healthy mice. NO plasma concentration was increased by OAT-1746 but was not affected by MM or bortezomib. CONCLUSIONS: Bortezomib exacerbates MM-mediated LV systolic dysfunction in a mouse model of MM, while an arginase inhibitor partially prevents it. Endothelium does not mediate either these adverse or beneficial effects. This suggests that proteasome inhibitors should be used with caution in patients with advanced myeloma, where the summation of cardiotoxicity could be expected. Therapies aimed at the NO pathway, in particular arginase inhibitors, could offer promise in the prevention/treatment of cardiotoxicity in MM.

7.
Sci Rep ; 12(1): 19660, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385153

RESUMEN

Multiple myeloma (MM) remains an incurable malignancy of plasma cells despite constantly evolving therapeutic approaches including various types of immunotherapy. Increased arginase activity has been associated with potent suppression of T-cell immune responses in different types of cancer. Here, we investigated the role of arginase 1 (ARG1) in Vκ*MYC model of MM in mice. ARG1 expression in myeloid cells correlated with tumor progression and was accompanied by a systemic drop in ʟ-arginine levels. In MM-bearing mice antigen-induced proliferation of adoptively transferred T-cells was strongly suppressed and T-cell proliferation was restored by pharmacological arginase inhibition. Progression of Vκ*MYC tumors was significantly delayed in mice with myeloid-specific ARG1 deletion. Arginase inhibition effectively inhibited tumor progression although it failed to augment anti-myeloma effects of bortezomib. However, arginase inhibitor completely prevented development of bortezomib-induced cardiotoxicity in mice. Altogether, these findings indicate that arginase inhibitors could be further tested as a complementary strategy in multiple myeloma to mitigate adverse cardiac events without compromising antitumor efficacy of proteasome inhibitors.


Asunto(s)
Mieloma Múltiple , Ratones , Animales , Bortezomib/farmacología , Bortezomib/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Arginasa/metabolismo , Cardiotoxicidad , Inhibidores de Proteasoma/farmacología
8.
Biomolecules ; 12(11)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36421728

RESUMEN

Right ventricular dysfunction (RVD) can follow primary pulmonary diseases, but the most common cause of its development is left-sided heart failure (HF). RVD is associated with HF progression, increased risk of death and hospitalisation. The mechanism of right ventricle (RV) remodelling leading to RVD due to left-sided HF is not fully elucidated. Rats underwent LAD ligation to induce extensive left ventricle (LV) myocardial infarction (MI) and subsequent left-sided HF. Sham-operated animals served as controls. After 8 weeks of follow-up, the animals underwent LV and RV catheterisation, and systolic function and intracellular Ca2+ signalling were assessed in cardiomyocytes isolated from both ventricles. We demonstrated that rats with LV failure induced by extensive LV myocardial infarction also develop RV failure, leading to symptomatic biventricular HF, despite only mildly increased RV afterload. The contractility of RV cardiomyocytes was significantly increased, which could be related to increased amplitude of Ca2+ transient, preserved SERCA2a activity and reduced Ca2+ efflux via NCX1 and PMCA. Our study indicates that RV failure associated with post-MI LV failure in a rat model cannot be explained by a decline in cardiomyocyte function. This indicates that other factors may play a role here, pointing to the need for further research to better understand the biology of RV failure in order to ultimately develop therapies targeting the RV.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Ratas , Animales , Remodelación Ventricular , Calcio , Ventrículos Cardíacos
9.
Biomed Pharmacother ; 154: 113544, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35988421

RESUMEN

The human body is a highly aerobic organism, which needs large amount of oxygen, especially in tissues characterized by high metabolic demand, such as the heart. Inadequate oxygen delivery underlies cardiovascular diseases, such as coronary artery disease, heart failure and pulmonary hypertension. Hemoglobin, the oxygen-transport metalloprotein in the red blood cells, gives the blood enormous oxygen carrying capacity; thus oxygen binding to hemoglobin in the lungs and oxygen dissociation in the target tissues are crucial points for oxygen delivery as well as potential targets for intervention. Myo-inositol trispyrophosphate (ITPP) acts as an effector of hemoglobin, shifting the oxygen dissociation curve to the right and increasing oxygen release in the target tissues, especially under hypoxic conditions. ITPP has been successfully used in cancer studies, demonstrating anti-cancer properties due to prevention of tumor hypoxia. Currently it is being tested in phase 2 clinical trials in humans with various tumors. First preclinical evidence also indicates that it can successfully alleviate myocardial hypoxia and prevent adverse left ventricular and right ventricular remodeling in post-myocardial infarction heart failure and pulmonary hypertension. The aim of the article is to summarize the current knowledge on ITTP, as well as to determine the prospects for its potential use in the treatment of many cardiovascular disorders.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Hipertensión Pulmonar , Neoplasias , Hemoglobinas/metabolismo , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Fosfatos de Inositol , Neoplasias/tratamiento farmacológico , Oxígeno/metabolismo
10.
Ageing Res Rev ; 81: 101722, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36038114

RESUMEN

Annually, approximately 17 million people die from cardiovascular diseases worldwide, half of them suddenly. The most common direct cause of sudden cardiac death is ventricular arrhythmia triggered by an acute coronary syndrome (ACS). The study summarizes the knowledge of the mechanisms of arrhythmia onset during ACS in humans and in animal models and factors that may influence the susceptibility to life-threatening arrhythmias during ACS with particular focus on the age and sex. The real impact of age and sex on the arrhythmic susceptibility within the setting of acute ischaemia is masked by the fact that ACSs result from coronary artery disease appearing with age much earlier among men than among women. However, results of researches show that in ageing process changes with potential pro-arrhythmic significance, such as increased fibrosis, cardiomyocyte hypertrophy, decrease number of gap junction channels, disturbances of the intracellular Ca2+ signalling or changes in electrophysiological parameters, occur independently of the development of cardiovascular diseases and are more severe in male individuals. A review of the literature also indicates a marked paucity of research in this area in female and elderly individuals. Greater awareness of sex differences in the aging process could help in the development of personalized prevention methods targeting potential pro-arrhythmic factors in patients of both sexes to reduce mortality during the acute phase of myocardial infarction. This is especially important in an era of aging populations in which women will predominate due to their longer lifespan.


Asunto(s)
Síndrome Coronario Agudo , Infarto del Miocardio , Isquemia Miocárdica , Anciano , Envejecimiento , Animales , Arritmias Cardíacas , Femenino , Humanos , Masculino , Isquemia Miocárdica/complicaciones
11.
Cells ; 11(15)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892568

RESUMEN

Development of heart failure (HF) after myocardial infarction (MI) is responsible for premature death. Complex cellular and molecular mechanisms are involved in this process. A number of studies have linked the epitranscriptomic RNA modification N6-methyladenosine (m6A) with HF, but it remains unknown how m6A affects the risk of developing HF after MI. We addressed the regulation of m6A and its demethylase fat mass and obesity-associated (FTO) after MI and their association with HF. Using liquid chromatography coupled to mass spectrometry, we observed an increase of m6A content in the infarcted area of rat hearts subjected to coronary ligation and a decrease in blood. FTO expression measured by quantitative PCR was downregulated in the infarcted hearts. In whole blood samples collected at the time of reperfusion in MI patients, m6A content was lower in patients who developed HF as attested by a 4-month ejection fraction (EF) of ≤40% as compared to patients who did not develop HF (EF > 50%). M6A content was higher in females. These results show that m6A measured in blood is associated with HF development after MI and motivate further investigation of the potential role of m6A as a novel epitranscriptomics biomarker and therapeutic target of HF.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Femenino , Humanos , ARN Mensajero/genética , Función Ventricular Izquierda
12.
J Clin Med ; 10(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34682854

RESUMEN

Life-threatening ventricular arrhythmias, such as ventricular tachycardia and ventricular fibrillation remain an ongoing clinical problem and their prevention and treatment require optimization. Conventional antiarrhythmic drugs are associated with significant proarrhythmic effects that often outweigh their benefits. Another option, the implantable cardioverter defibrillator, though clearly the primary therapy for patients at high risk of ventricular arrhythmias, is costly, invasive, and requires regular monitoring. Thus there is a clear need for new antiarrhythmic treatment strategies. Ivabradine, a heartrate-reducing agent, an inhibitor of HCN channels, may be one of such options. In this review we discuss emerging data from experimental studies that indicate new mechanism of action of this drug and further areas of investigation and potential use of ivabradine as an antiarrhythmic agent. However, clinical evidence is limited, and the jury is still out on effects of ivabradine on cardiac ventricular arrhythmias in the clinical setting.

13.
Sci Rep ; 11(1): 18002, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504231

RESUMEN

Pulmonary hypertension (PH) initially results in compensatory right ventricular (RV) hypertrophy, but eventually in RV failure. This transition is poorly understood, but may be triggered by hypoxia. Measurements of RV oxygen tension (pO2) in PH are lacking. We hypothesized that RV hypoxia occurs in monocrotaline-induced PH in rats and that myo-inositol trispyrophosphate (ITPP), facilitating oxygen dissociation from hemoglobin, can relieve it. Rats received monocrotaline (PH) or saline (control) and 24 days later echocardiograms, pressure-volume loops were obtained and myocardial pO2 was measured using a fluorescent probe. In PH mean pulmonary artery pressure more than doubled (35 ± 5 vs. 15 ± 2 in control), RV was hypertrophied, though its contractility was augmented. RV and LV pO2 was 32 ± 5 and 15 ± 8 mmHg, respectively, in control rats. In PH RV pO2 was reduced to 18 ± 9 mmHg, while LV pO2 was unchanged. RV pO2 correlated with RV diastolic wall stress (negatively) and LV systolic pressure (positively). Acute ITPP administration did not affect RV or LV pO2 in control animals, but increased RV pO2 to 26 ± 5 mmHg without affecting LV pO2 in PH. RV oxygen balance is impaired in PH and as such can be an important target for PH therapy. ITPP may be one of such potential therapies.


Asunto(s)
Cardiotónicos/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Fosfatos de Inositol/farmacología , Disfunción Ventricular Derecha/tratamiento farmacológico , Animales , Cardiotónicos/administración & dosificación , Modelos Animales de Enfermedad , Hemoglobinas/metabolismo , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipoxia/inducido químicamente , Hipoxia/metabolismo , Hipoxia/fisiopatología , Masculino , Monocrotalina/administración & dosificación , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Ratas , Ratas Wistar , Resultado del Tratamiento , Disfunción Ventricular Derecha/inducido químicamente , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Derecha/fisiología
14.
Biomed Pharmacother ; 142: 111983, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34392089

RESUMEN

BACKGROUND: The impact of sex and age on the arrhythmic susceptibility within the setting of acute ischemia is masked by the fact that acute coronary events result from coronary artery disease appearing with age much earlier among men than among women. METHODS AND RESULTS: LAD ligation or sham operations were performed in rats of both sexes at the age 3 and 24 months. An ECG was recorded continuously for 6 h after the operation. The number of early and late premature ventricular beats (PVBs), episodes of ventricular tachycardia (VT) and fibrillation (VF), heart rate, QRS, QT and Tpeak-Tend duration were analysed. Epicardial action potentials were recorded in vivo, Ca2+ signaling was evaluated in isolated cardiomyocytes, fibrosis and connexin-43 expression and localization were measured in the septum. PVBs, VT and VF episodes are much more common in older males than in young males and females independently from their age. Fibrosis with varying intensity in different muscle layers, hypertrophy of cardiomyocytes, reduced number of gap junctions and their appearance on the lateral myocyte membrane, QT prolongation, increase transmural dispersion of repolarisation and a decreased function of SERCA2a may increase the propensity to arrhythmia within the setting of acute ischemia. CONCLUSION: We show that the male sex, especially in case of older individuals is a strong predictor of increased arrhythmic susceptibility within the acute ischemia setting regardless of its impact on the occurrence of cardiovascular diseases. A personalized sex-dependent prevention treatment is needed to reduce the mortality in acute phases of myocardial infarction.


Asunto(s)
Enfermedad de la Arteria Coronaria/complicaciones , Isquemia Miocárdica/complicaciones , Taquicardia Ventricular/epidemiología , Fibrilación Ventricular/epidemiología , Potenciales de Acción , Factores de Edad , Animales , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Frecuencia Cardíaca/fisiología , Incidencia , Masculino , Ratas , Ratas Wistar , Factores Sexuales , Complejos Prematuros Ventriculares/epidemiología
15.
J Mol Cell Cardiol ; 159: 16-27, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34139233

RESUMEN

Chronic heart failure (HF) is often accompanied by systemic iron deficiency (ID). However, effects of ID on cardiac iron status and progression of HF are unknown. To investigate these effects rats underwent LAD ligation to induce post-myocardial infarction HF or sham operation. After 3 weeks the animals from both groups were randomized into three subgroups: control, moderate ID and severe ID+anemia (IDA) by a combination of phlebotomy and low iron diet for 5 weeks. Serum and hepatic iron content were reduced by 55% and 70% (ID) and by 80% and 77% (IDA), respectively, while cardiac iron content was unchanged in HF rats. Changes in expression of all cardiomyocyte iron handling proteins indicating preserved cardiomyocytes iron status in HF and ID/IDA. Contractile function of LV cardiomyocytes, Ca2+ transient amplitude, sarcoplasmic reticulum Ca2+ release and SERCA2a function was augmented by ID and IDA and it was accompanied by an increase in serum catecholamines. Neither ID nor IDA affected left ventricular (LV) systolic or diastolic function or dimensions. To sum up, systemic ID does not result in cardiac ID and does not affect progression of HF and even improves contractile function and Ca2+ handling of isolated LV cardiomyocytes, however, at the cost of increased catecholamine level. This suggests that intravenous iron therapy should be considered as an additional therapeutic option in HF, preventing the increase of catecholaminergic drive with its well-known long-term adverse effects.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Deficiencias de Hierro/metabolismo , Hierro/metabolismo , Animales , Calcio/metabolismo , Masculino , Contracción Miocárdica/fisiología , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Retículo Sarcoplasmático/metabolismo
16.
Heart Rhythm ; 18(7): 1230-1238, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33737235

RESUMEN

Cardiac arrhythmias are a major source of mortality and morbidity. Unfortunately, their treatment remains suboptimal. Major classes of antiarrhythmic drugs pose a significant risk of proarrhythmia, and their side effects often outweigh their benefits. Therefore, implantable devices remain the only truly effective antiarrhythmic therapy, and new strategies of antiarrhythmic treatment are required. Ivabradine is a selective heart rate-reducing agent, an inhibitor of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, currently approved for treatment of coronary artery disease and chronic heart failure. In this review, we focus on the clinical and basic science evidence for the antiarrhythmic and proarrhythmic effects of ivabradine. We attempt to dissect the mechanisms behind the effects of ivabradine and indicate the focus of future studies.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Frecuencia Cardíaca/efectos de los fármacos , Ivabradina/uso terapéutico , Arritmias Cardíacas/fisiopatología , Fármacos Cardiovasculares/uso terapéutico , Humanos
17.
Biomed Pharmacother ; 136: 111250, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33450487

RESUMEN

BACKGROUND: Exacerbations of chronic heart failure (CHF) are often treated with catecholamines to provide short term inotropic support, but this strategy is associated with long-term detrimental hemodynamic effects and increased ventricular arrhythmias (VA), possibly related to increased heart rate (HR). We hypothesized that ivabradine may prevent adverse effects of short-term dopamine treatment in CHF. METHODS: Rats with post-myocardial infarction CHF received 2-week infusion of saline, dopamine(D), ivabradine(I) or D&I; cardiac function was assessed using echocardiography and pressure-volume loops while VA were assessed using telemetric ECG recording. Expression of HCN4, a potentially proarrhythmic channel blocked by ivabradine, was assessed in left ventricular (LV) myocardium. HCN4 expression was also assessed in human explanted normal and failing hearts and correlated with VA. FINDINGS: Dopamine infusion had detrimental effects on hemodynamic parameters and LV remodeling and induced VA in CHF rats, while ivabradine completely prevented these effects. CHF rats demonstrated HCN4 overexpression in LV myocardium, and ivabradine and, unexpectedly, dopamine prevented this. Failing human hearts also exhibited HCN4 overexpression in LV myocardium that was unrelated to patient's sex, CHF etiology, VA severity or plasma NT-proBNP. INTERPRETATION: HR reduction offered by ivabradine may be a feasible strategy to extract benefits of inotropic support in CHF exacerbations, avoiding detrimental effects on CHF biology or VA. Ivabradine may offer additional beneficial effects in this setting, going beyond pure HR reduction, however prevention of ventricular HCN4 overexpression is unlikely to play a major role.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/prevención & control , Dopamina/toxicidad , Insuficiencia Cardíaca/tratamiento farmacológico , Frecuencia Cardíaca/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ivabradina/farmacología , Miocardio/metabolismo , Canales de Potasio/metabolismo , Animales , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Proteínas Musculares/metabolismo , Ratas Wistar , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
18.
Sci Rep ; 10(1): 15027, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929098

RESUMEN

Ventricular arrhythmias are a major source of early mortality in acute myocardial infarction (MI) and remain a major therapeutic challenge. Thus we investigated effects of ivabradine, a presumably specific bradycardic agent versus metoprolol, a ß-blocker, at doses offering the same heart rate (HR) reduction, on ventricular arrhythmias in the acute non-reperfused MI in the rat. Immediately after MI induction a single dose of ivabradine/ metoprolol was given. ECG was continuously recorded and ventricular arrhythmias were analyzed. After 6 h epicardial monophasic action potentials (MAPs) were recorded and cardiomyocyte Ca2+ handling was assessed. Both ivabradine and metoprolol reduced HR by 17% and arrhythmic mortality (14% and 19%, respectively, versus 33% in MI, p < 0.05) and ventricular arrhythmias in post-MI rats. Both drugs reduced QTc prolongation and decreased sensitivity of ryanodine receptors in isolated cardiomyocytes, but otherwise had no effect on Ca2+ handling, velocity of conduction or repolarization. We did not find any effects of potential IKr inhibition by ivabradine in this setting. Thus Ivabradine is an equally effective antiarrhythmic agent as metoprolol in early MI in the rat. It could be potentially tested as an alternative antiarrhythmic agent in acute MI when ß-blockers are contraindicated.


Asunto(s)
Antiarrítmicos/uso terapéutico , Ivabradina/uso terapéutico , Metoprolol/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Taquicardia Ventricular/tratamiento farmacológico , Fibrilación Ventricular/tratamiento farmacológico , Potenciales de Acción , Animales , Señalización del Calcio , Células Cultivadas , Frecuencia Cardíaca , Masculino , Infarto del Miocardio/complicaciones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/etiología , Taquicardia Ventricular/prevención & control , Fibrilación Ventricular/etiología , Fibrilación Ventricular/prevención & control
19.
J Cell Mol Med ; 24(3): 2272-2283, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31957267

RESUMEN

Heart failure is a consequence of progression hypoxia-dependent tissue damages. Therapeutic approaches to restore and/or protect the healthy cardiac tissue have largely failed and remain a major challenge of regenerative medicine. The myo-inositol trispyrophosphate (ITPP) is a modifier of haemoglobin which enters the red blood cells and modifies the haemoglobin properties, allowing for easier and better delivery of oxygen by the blood. Here, we show that this treatment approach in an in vivo model of myocardial infarction (MI) results in an efficient protection from heart failure, and we demonstrate the recovery effect on post-MI left ventricular remodelling in the rat model. Cultured cardiomyocytes used to study the molecular mechanism of action of ITPP in vitro displayed the fast stimulation of HIF-1 upon hypoxic conditions. HIF-1 overexpression was prevented by ITPP when incorporated into red blood cells applied in a model of blood-perfused cardiomyocytes coupling the dynamic shear stress effect to the enhanced O2 supply by modification of haemoglobin ability to release O2 in hypoxia. ITPP treatment appears a breakthrough strategy for the efficient and safe treatment of hypoxia- or ischaemia-induced injury of cardiac tissue.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Eritrocitos/efectos de los fármacos , Hipoxia/tratamiento farmacológico , Fosfatos de Inositol/farmacología , Oxígeno/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Recuento de Eritrocitos/métodos , Eritrocitos/metabolismo , Femenino , Hemoglobinas/metabolismo , Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar
20.
J Cell Physiol ; 234(12): 21613-21629, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31106422

RESUMEN

Iron is a key micronutrient for the human body and participates in biological processes, such as oxygen transport, storage, and utilization. Iron homeostasis plays a crucial role in the function of the heart and both iron deficiency and iron overload are harmful to the heart, which is partly mediated by increased oxidative stress. Iron enters the cardiomyocyte through the classic pathway, by binding to the transferrin 1 receptor (TfR1), but also through other routes: T-type calcium channel (TTCC), divalent metal transporter 1 (DMT1), L-type calcium channel (LTCC), Zrt-, Irt-like Proteins (ZIP) 8 and 14. Only one protein, ferroportin (FPN), extrudes iron from cardiomyocytes. Intracellular iron is utilized, stored bound to cytoplasmic ferritin or imported by mitochondria. This cardiomyocyte iron homeostasis is controlled by iron regulatory proteins (IRP). When the cellular iron level is low, expression of IRPs increases and they reduce expression of FPN, inhibiting iron efflux, reduce ferritin expression, inhibiting iron storage and augment expression of TfR1, increasing cellular iron availability. Such cellular iron homeostasis explains why the heart is very susceptible to iron overload: while cardiomyocytes possess redundant iron importing mechanisms, they are equipped with only one iron exporting protein, ferroportin. Furthermore, abnormalities of iron homeostasis have been found in heart failure and coronary artery disease, however, no clear picture is emerging yet in this area. If we better understand iron homeostasis in the cardiomyocyte, we may be able to develop better therapies for a variety of heart diseases to which abnormalities of iron homeostasis may contribute.


Asunto(s)
Cardiopatías/metabolismo , Hierro/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Homeostasis/fisiología , Humanos , Proteínas Reguladoras del Hierro/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...