Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843935

RESUMEN

Age-related reduction in muscle stem cell (MuSC) regenerative capacity is associated with cell-autonomous and non-cell-autonomous changes caused by alterations in systemic and skeletal muscle environments, ultimately leading to a decline in MuSC number and function. Previous studies demonstrated that STAT3 plays a key role in driving MuSC expansion and differentiation after injury-activated regeneration, by regulating autophagy in activated MuSCs. However, autophagy gradually declines in MuSCs during lifespan and contributes to the impairment of MuSC-mediated regeneration of aged muscles. Here, we show that STAT3 inhibition restores the autophagic process in aged MuSCs, thereby recovering MuSC ability to promote muscle regeneration in geriatric mice. We show that STAT3 inhibition could activate autophagy at the nuclear level, by promoting transcription of autophagy-related genes, and at the cytoplasmic level, by targeting STAT3/PKR phosphorylation of eIF2α. These results point to STAT3 inhibition as a potential intervention to reverse the age-related autophagic block that impairs MuSC ability to regenerate aged muscles. They also reveal that STAT3 regulates MuSC function by both transcription-dependent and transcription-independent regulation of autophagy.


Asunto(s)
Envejecimiento , Autofagia , Músculo Esquelético , Regeneración , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/metabolismo , Animales , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/citología , Envejecimiento/fisiología , Envejecimiento/metabolismo , Ratones Endogámicos C57BL , Células Madre/metabolismo , Células Madre/citología , Fosforilación , Masculino , Diferenciación Celular , Transducción de Señal
2.
Front Pharmacol ; 15: 1360099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590640

RESUMEN

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease characterized by the degeneration of motor neurons that leads to muscle wasting and atrophy. Epidemiological and experimental evidence suggests a causal relationship between ALS and physical activity (PA). However, the impact of PA on motor neuron loss and sarcopenia is still debated, probably because of the heterogeneity and intensities of the proposed exercises. With this study, we aimed to clarify the effect of intense endurance exercise on the onset and progression of ALS in the SOD1-G93A mouse model. Methods: We randomly selected four groups of twelve 35-day-old female mice. SOD1-G93A and WT mice underwent intense endurance training on a motorized treadmill for 8 weeks, 5 days a week. During the training, we measured muscle strength, weight, and motor skills and compared them with the corresponding sedentary groups to define the disease onset. At the end of the eighth week, we analyzed the skeletal muscle-motor neuron axis by histological and molecular techniques. Results: Intense endurance exercise anticipates the onset of the disease by 1 week (age of the onset: trained SOD1-G93A = 63.17 ± 2.25 days old; sedentary SOD1-G93A = 70.75 ± 2.45 days old). In SOD1-G93A mice, intense endurance exercise hastens the muscular switch to a more oxidative phenotype and worsens the denervation process by dismantling neuromuscular junctions in the tibialis anterior, enhancing the Wallerian degeneration in the sciatic nerve, and promoting motor neuron loss in the spinal cord. The training exacerbates neuroinflammation, causing immune cell infiltration in the sciatic nerve and a faster activation of astrocytes and microglia in the spinal cord. Conclusion: Intense endurance exercise, acting on skeletal muscles, worsens the pathological hallmarks of ALS, such as denervation and neuroinflammation, brings the onset forward, and accelerates the progression of the disease. Our findings show the potentiality of skeletal muscle as a target for both prognostic and therapeutic strategies; the preservation of skeletal muscle health by specific intervention could counteract the dying-back process and protect motor neurons from death. The physiological characteristics and accessibility of skeletal muscle further enhance its appeal as a therapeutic target.

4.
iScience ; 26(7): 107114, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37416457

RESUMEN

We performed scRNA-seq/snATAC-seq of skeletal muscles post sciatic nerve transection to delineate cell type-specific patterns of gene expression/chromatin accessibility at different time points post-denervation. Unlike myotrauma, denervation selectively activates glial cells and Thy1/CD90-expressing mesenchymal cells. Glial cells expressed Ngf receptor (Ngfr) and were located near neuromuscular junctions (NMJs), close to Thy1/CD90-expressing cells, which provided the main cellular source of NGF post-denervation. Functional communication between these cells was mediated by NGF/NGFR, as either recombinant NGF or co-culture with Thy1/CD90-expressing cells could increase glial cell number ex vivo. Pseudo-time analysis in glial cells revealed an initial bifurcation into processes related to either cellular de-differentiation/commitment to specialized cell types (e.g., Schwann cells), or failure to promote nerve regeneration, leading to extracellular matrix remodeling toward fibrosis. Thus, interactions between denervation-activated Thy1/CD90-expressing and glial cells represent an early abortive process toward NMJs repair, ensued by the conversion of denervated muscles into an environment hostile for NMJ repair.

5.
Sci Rep ; 13(1): 10370, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365262

RESUMEN

The adult heart displays poor reparative capacities after injury. Cell transplantation and tissue engineering approaches have emerged as possible therapeutic options. Several stem cell populations have been largely used to treat the infarcted myocardium. Nevertheless, transplanted cells displayed limited ability to establish functional connections with the host cardiomyocytes. In this study, we provide a new experimental tool, named 3D eX vivo muscle engineered tissue (X-MET), to define the contribution of mechanical stimuli in triggering functional remodeling and to rescue cardiac ischemia. We revealed that mechanical stimuli trigger a functional remodeling of the 3D skeletal muscle system toward a cardiac muscle-like structure. This was supported by molecular and functional analyses, demonstrating that remodeled X-MET expresses relevant markers of functional cardiomyocytes, compared to unstimulated and to 2D- skeletal muscle culture system. Interestingly, transplanted remodeled X-MET preserved heart function in a murine model of chronic myocardial ischemia and increased survival of transplanted injured mice. X-MET implantation resulted in repression of pro-inflammatory cytokines, induction of anti-inflammatory cytokines, and reduction in collagen deposition. Altogether, our findings indicate that biomechanical stimulation induced a cardiac functional remodeling of X-MET, which showed promising seminal results as a therapeutic product for the development of novel strategies for regenerative medicine.


Asunto(s)
Isquemia Miocárdica , Ratones , Animales , Isquemia Miocárdica/terapia , Miocardio , Miocitos Cardíacos , Ingeniería de Tejidos/métodos , Fenómenos Fisiológicos Cardiovasculares
6.
Cell Rep ; 41(12): 111861, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36543136

RESUMEN

Striated muscle is a highly organized structure composed of well-defined anatomical domains with integrated but distinct assignments. So far, the lack of a direct correlation between tissue architecture and gene expression has limited our understanding of how each unit responds to physio-pathologic contexts. Here, we show how the combined use of spatially resolved transcriptomics and immunofluorescence can bridge this gap by enabling the unbiased identification of such domains and the characterization of their response to external perturbations. Using a spatiotemporal analysis, we follow changes in the transcriptome of specific domains in muscle in a model of denervation. Furthermore, our approach enables us to identify the spatial distribution and nerve dependence of atrophic signaling pathway and polyamine metabolism to glycolytic fibers. Indeed, we demonstrate that perturbations of polyamine pathway can affect muscle function. Our dataset serves as a resource for future studies of the mechanisms underlying skeletal muscle homeostasis and innervation.


Asunto(s)
Atrofia Muscular , Transcriptoma , Humanos , Atrofia Muscular/metabolismo , Transcriptoma/genética , Músculo Esquelético/metabolismo , Perfilación de la Expresión Génica , Poliaminas/metabolismo
7.
Cell Metab ; 33(11): 2201-2214.e11, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34678202

RESUMEN

Type 2 diabetes mellitus (T2DM) is associated with impaired skeletal muscle function and degeneration of the skeletal muscles. However, the mechanisms underlying the degeneration are not well described in human skeletal muscle. Here we show that skeletal muscle of T2DM patients exhibit degenerative remodeling of the extracellular matrix that is associated with a selective increase of a subpopulation of fibro-adipogenic progenitors (FAPs) marked by expression of THY1 (CD90)-the FAPCD90+. We identify platelet-derived growth factor (PDGF) as a key FAP regulator, as it promotes proliferation and collagen production at the expense of adipogenesis. FAPsCD90+ display a PDGF-mimetic phenotype, with high proliferative activity, clonogenicity, and production of extracellular matrix. FAPCD90+ proliferation was reduced by in vitro treatment with metformin. Furthermore, metformin treatment reduced FAP content in T2DM patients. These data identify a PDGF-driven conversion of a subpopulation of FAPs as a key event in the fibrosis development in T2DM muscle.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Musculares , Adipogénesis , Diferenciación Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Enfermedades Musculares/metabolismo
8.
Metabolites ; 11(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34436458

RESUMEN

Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions.

9.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801487

RESUMEN

Skeletal muscle, the most abundant tissue in the body, is heterogeneous. This heterogeneity forms the basis of muscle diversity, which is reflected in the specialized functions of muscles in different parts of the body. However, these different parts are not always clearly delimitated, and this often gives rise to gradients within the same muscle and even across the body. During the last decade, several studies on muscular disorders both in mice and in humans have observed particular distribution patterns of muscle weakness during disease, indicating that the same mutation can affect muscles differently. Moreover, these phenotypical differences reveal gradients of severity, existing alongside other architectural gradients. These two factors are especially prominent in sarcoglycanopathies. Nevertheless, very little is known about the mechanism(s) driving the phenotypic diversity of the muscles affected by these diseases. Here, we will review the available literature on sarcoglycanopathies, focusing on phenotypic differences among affected muscles and gradients, characterization techniques, molecular signatures, and cell population heterogeneity, highlighting the possibilities opened up by new technologies. This review aims to revive research interest in the diverse disease phenotype affecting different muscles, in order to pave the way for new therapeutic interventions.


Asunto(s)
Mutación , Sarcoglicanopatías/clasificación , Sarcoglicanopatías/patología , Sarcoglicanos/metabolismo , Animales , Humanos , Sarcoglicanopatías/metabolismo , Sarcoglicanos/genética
10.
JCI Insight ; 6(7)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33661767

RESUMEN

Here, we report on the identification of Itga7-expressing muscle-resident glial cells activated by loss of neuromuscular junction (NMJ) integrity. Gene expression analysis at the bulk and single-cell level revealed that these cells are distinct from Itga7-expressing muscle satellite cells. We show that a selective activation and expansion of Itga7+ glial cells occur in response to muscle nerve lesion. Upon activation, muscle glial-derived progenies expressed neurotrophic genes, including nerve growth factor receptor, which enables their isolation by FACS. We show that activated muscle glial cells also expressed genes potentially implicated in extracellular matrix remodeling at NMJs. We found that tenascin C, which was highly expressed by muscle glial cells, activated upon nerve injury and preferentially localized to NMJ. Interestingly, we observed that the activation of muscle glial cells by acute nerve injury was reversible upon NMJ repair. By contrast, in a mouse model of ALS, in which NMJ degeneration is progressive, muscle glial cells steadily increased over the course of the disease. However, they exhibited an impaired neurotrophic activity, suggesting that pathogenic activation of glial cells may be implicated in ALS progression.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Músculo Esquelético/citología , Neuroglía/fisiología , Traumatismos de la Médula Espinal/patología , Animales , Antígenos CD/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Cadenas alfa de Integrinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Neuroglía/citología , Unión Neuromuscular/citología , Receptor de Factor de Crecimiento Nervioso/genética , Receptores Colinérgicos/metabolismo , Nervio Ciático/lesiones , Análisis de la Célula Individual , Superóxido Dismutasa-1/genética
11.
Diagnostics (Basel) ; 11(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445790

RESUMEN

Body weight loss, mostly due to the wasting of skeletal muscle and adipose tissue, is the hallmark of the so-called cachexia syndrome. Cachexia is associated with several acute and chronic disease states such as cancer, chronic obstructive pulmonary disease (COPD), heart and kidney failure, and acquired and autoimmune diseases and also pharmacological treatments such as chemotherapy. The clinical relevance of cachexia and its impact on patients' quality of life has been neglected for decades. Only recently did the international community agree upon a definition of the term cachexia, and we are still awaiting the standardization of markers and tests for the diagnosis and staging of cancer-related cachexia. In this review, we discuss cachexia, considering the evolving use of the term for diagnostic purposes and the implications it has for clinical biomarkers, to provide a comprehensive overview of its biology and clinical management. Advances and tools developed so far for the in vitro testing of cachexia and drug screening will be described. We will also evaluate the nomenclature of different forms of muscle wasting and degeneration and discuss features that distinguish cachexia from other forms of muscle wasting in the context of different conditions.

12.
Hypertension ; 76(6): 1753-1761, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33070664

RESUMEN

Angiotensin (1-7) production increases during AT1R (angiotensin type-1 receptor) blockade. The contribution of Ang (1-7) (angiotensin [1-7]) and its receptor (MasR) to the favorable effect of angiotensin receptor blockers on remodeling and function of resistance arteries remains unclear. We sought to determine whether MasR contributes to the improvement of vascular structure and function during chronic AT1R blockade. Spontaneously hypertensive rats were treated with Ang (1-7) or olmesartan ± MasR antagonist A-779, or vehicle, for 14 days. Blood pressure was measured by tail cuff methodology. Mesenteric arteries were dissected and mounted on a pressurized micromyograph to evaluate media-to-lumen ratio (M/L) and endothelial function. Expression of MasR and eNOS (endothelial nitric oxide synthase) was evaluated by immunoblotting, plasma nitrate by colorimetric assay, and reactive oxygen species production by dihydroethidium staining. Independently of blood pressure, olmesartan significantly reduced M/L and improved NO bioavailability, A-779 prevented these effects. Likewise, Ang (1-7) significantly reduced M/L and NO bioavailability. MasR expression was significantly increased by Ang (1-7) as well as by olmesartan, and it was blunted in the presence of A-779. Both Ang (1-7) and olmesartan increased eNOS expression and plasma nitrite which were reduced by A-779. Superoxide generation was attenuated by olmesartan and Ang (1-7) and was blunted in the presence of A-779. These MasR-mediated actions were independent of AT2R activation since olmesartan and Ang (1-7) increased MasR expression and reduced M/L in Ang II (angiotensin II)-infused AT2R knockout mice, independently of blood pressure control. A-779 prevented these effects. Hence, MasR activation may contribute to the favorable effects of AT1R antagonism on NO bioavailability and microvascular remodeling, independently of AT2R activation and blood pressure control.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Hipertensión/fisiopatología , Imidazoles/farmacología , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Tetrazoles/farmacología , Remodelación Vascular/efectos de los fármacos , Angiotensina II/análogos & derivados , Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Presión Sanguínea/fisiología , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiología , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fragmentos de Péptidos/farmacología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Ratas Endogámicas SHR , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Remodelación Vascular/fisiología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
13.
Toxins (Basel) ; 12(8)2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751937

RESUMEN

Botulinum neurotoxin type A (BoNT/A) is a major therapeutic agent that has been proven to be a successful treatment for different neurological disorders, with emerging novel therapeutic indications each year. BoNT/A exerts its action by blocking SNARE complex formation and vesicle release through the specific cleavage of SNAP-25 protein; the toxin is able to block the release of pro-inflammatory molecules for months after its administration. Here we demonstrate the extraordinary capacity of BoNT/A to neutralize the complete paralysis and pain insensitivity induced in a murine model of severe spinal cord injury (SCI). We show that the toxin, spinally administered within one hour from spinal trauma, exerts a long-lasting proteolytic action, up to 60 days after its administration, and induces a complete recovery of muscle and motor function. BoNT/A modulates SCI-induced neuroglia hyperreactivity, facilitating axonal restoration, and preventing secondary cells death and damage. Moreover, we demonstrate that BoNT/A affects SCI-induced neuropathic pain after moderate spinal contusion, confirming its anti-nociceptive action in this kind of pain, as well. Our results provide the intriguing and real possibility to identify in BoNT/A a therapeutic tool in counteracting SCI-induced detrimental effects. Because of the well-documented BoNT/A pharmacology, safety, and toxicity, these findings strongly encourage clinical translation.


Asunto(s)
Analgésicos/uso terapéutico , Toxinas Botulínicas Tipo A/uso terapéutico , Atrofia Muscular/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Fármacos Neuromusculares/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Parálisis/tratamiento farmacológico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Proliferación Celular/efectos de los fármacos , Cicatriz/prevención & control , Femenino , Ratones , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos
14.
Life Sci Alliance ; 3(10)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32753528

RESUMEN

RNA-binding proteins orchestrate the composite life of RNA molecules and impact most physiological processes, thus underlying complex phenotypes. The RNA-binding protein Sam68 regulates differentiation processes by modulating splicing, polyadenylation, and stability of select transcripts. Herein, we found that Sam68 -/- mice display altered regulation of alternative splicing in the spinal cord of key target genes involved in synaptic functions. Analysis of the motor units revealed that Sam68 ablation impairs the establishment of neuromuscular junctions and causes progressive loss of motor neurons in the spinal cord. Importantly, alterations of neuromuscular junction morphology and properties in Sam68 -/- mice correlate with defects in muscle and motor unit integrity. Sam68 -/- muscles display defects in postnatal development, with manifest signs of atrophy. Furthermore, fast-twitch muscles in Sam68 -/- mice show structural features typical of slow-twitch muscles, suggesting alterations in the metabolic and functional properties of myofibers. Collectively, our data identify a key role for Sam68 in muscle development and suggest that proper establishment of motor units requires timely expression of synaptic splice variants.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Empalme Alternativo/genética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/metabolismo , Unión Neuromuscular/fisiología , Empalme del ARN/genética , Empalme del ARN/fisiología , Proteínas de Unión al ARN/genética , Sinapsis/metabolismo
15.
iScience ; 23(5): 101087, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32371370

RESUMEN

Patients with ALS show, in addition to the loss of motor neurons in the spinal cord, brainstem, and cerebral cortex, an abnormal depletion of energy stores alongside hypermetabolism. In this study, we show that bioenergetic defects and muscle remodeling occur in skeletal muscle of the SOD1G93A mouse model of ALS mice prior to disease onset and before the activation of muscle denervation markers, respectively. These changes in muscle physiology were followed by an increase in energy expenditure unrelated to physical activity. Finally, chronic treatment of SOD1G93A mice with Ranolazine, an FDA-approved inhibitor of fatty acid ß-oxidation, led to a decrease in energy expenditure in symptomatic SOD1G93A mice, and this occurred in parallel with a robust, albeit temporary, recovery of the pathological phenotype.

16.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244482

RESUMEN

Skeletal muscle regeneration following injury depends on the ability of satellite cells (SCs) to proliferate, self-renew, and eventually differentiate. The factors that regulate the process of self-renewal are poorly understood. In this study we examined the role of PKCθ in SC self-renewal and differentiation. We show that PKCθ is expressed in SCs, and its active form is localized to the chromosomes, centrosomes, and midbody during mitosis. Lack of PKCθ promotes SC symmetric self-renewal division by regulating Pard3 polarity protein localization, without affecting the overall proliferation rate. Genetic ablation of PKCθ or its pharmacological inhibition in vivo did not affect SC number in healthy muscle. By contrast, after induction of muscle injury, lack or inhibition of PKCθ resulted in a significant expansion of the quiescent SC pool. Finally, we show that lack of PKCθ does not alter the inflammatory milieu after acute injury in muscle, suggesting that the enhanced self-renewal ability of SCs in PKCθ-/- mice is not due to an alteration in the inflammatory milieu. Together, these results suggest that PKCθ plays an important role in SC self-renewal by stimulating their expansion through symmetric division, and it may represent a promising target to manipulate satellite cell self-renewal in pathological conditions.


Asunto(s)
Proteína Quinasa C-theta/genética , Proteína Quinasa C-theta/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología , Animales , Diferenciación Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mioblastos/metabolismo , Regeneración/fisiología , Transcriptoma
17.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023816

RESUMEN

Duchenne muscular dystrophy (DMD) is a genetic disease characterized by muscle wasting and chronic inflammation, leading to impaired satellite cells (SCs) function and exhaustion of their regenerative capacity. We previously showed that lack of PKCθ in mdx mice, a mouse model of DMD, reduces muscle wasting and inflammation, and improves muscle regeneration and performance at early stages of the disease. In this study, we show that muscle regeneration is boosted, and fibrosis reduced in mdxθ-/- mice, even at advanced stages of the disease. This phenotype was associated with a higher number of Pax7 positive cells in mdxθ-/- muscle compared with mdx muscle, during the progression of the disease. Moreover, the expression level of Pax7 and Notch1, the pivotal regulators of SCs self-renewal, were upregulated in SCs isolated from mdxθ-/- muscle compared with mdx derived SCs. Likewise, the expression of the Notch ligands Delta1 and Jagged1 was higher in mdxθ-/- muscle compared with mdx. The expression level of Delta1 and Jagged1 was also higher in PKCθ-/- muscle compared with WT muscle following acute injury. In addition, lack of PKCθ prolonged the survival and sustained the differentiation of transplanted myogenic progenitors. Overall, our results suggest that lack of PKCθ promotes muscle repair in dystrophic mice, supporting stem cells survival and maintenance through increased Delta-Notch signaling.


Asunto(s)
Cardiotoxinas/efectos adversos , Músculo Esquelético/lesiones , Distrofia Muscular de Duchenne/genética , Proteína Quinasa C-theta/genética , Células Madre/citología , Animales , Diferenciación Celular , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Factor de Transcripción PAX7/metabolismo , Receptor Notch1/metabolismo , Regeneración , Transducción de Señal , Trasplante de Células Madre , Células Madre/efectos de los fármacos , Células Madre/metabolismo
18.
PLoS Genet ; 15(10): e1008408, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31626629

RESUMEN

Satellite cells (SCs) are muscle stem cells that remain quiescent during homeostasis and are activated in response to acute muscle damage or in chronic degenerative conditions such as Duchenne Muscular Dystrophy. The activity of SCs is supported by specialized cells which either reside in the muscle or are recruited in regenerating skeletal muscles, such as for instance macrophages (MΦs). By using a dystrophic mouse model of transient MΦ depletion, we describe a shift in identity of muscle stem cells dependent on the crosstalk between MΦs and SCs. Indeed MΦ depletion determines adipogenic conversion of SCs and exhaustion of the SC pool leading to an exacerbated dystrophic phenotype. The reported data could also provide new insights into therapeutic approaches targeting inflammation in dystrophic muscles.


Asunto(s)
Diferenciación Celular/genética , Macrófagos/metabolismo , Distrofia Muscular de Duchenne/genética , Regeneración/genética , Animales , Linaje de la Célula/genética , Modelos Animales de Enfermedad , Distrofina/genética , Humanos , Macrófagos/patología , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mioblastos/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología
19.
Front Physiol ; 10: 1074, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31496956

RESUMEN

Skeletal muscle is composed of a large and heterogeneous assortment of cell populations that interact with each other to maintain muscle homeostasis and orchestrate regeneration. Although satellite cells (SCs) - which are muscle stem cells - are the protagonists of functional muscle repair following damage, several other cells such as inflammatory, vascular, and mesenchymal cells coordinate muscle regeneration in a finely tuned process. Fibro-adipogenic progenitors (FAPs) are a muscle interstitial mesenchymal cell population, which supports SCs differentiation during tissue regeneration. During the first days following muscle injury FAPs undergo massive expansion, which is followed by their macrophage-mediated clearance and the re-establishment of their steady-state pool. It is during this critical time window that FAPs, together with the other cellular components of the muscle stem cell niche, establish a dynamic network of interactions that culminate in muscle repair. A number of different molecules have been recently identified as important mediators of this cross-talk, and its alteration has been associated with different muscle pathologies. In this review, we will focus on the soluble factors that regulate FAPs activity, highlighting their roles in orchestrating the inter-cellular interactions between FAPs and the other cell populations that participate in muscle regeneration.

20.
J Cachexia Sarcopenia Muscle ; 10(4): 872-893, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31020811

RESUMEN

BACKGROUND: Histamine is an immune modulator, neuroprotective, and remyelinating agent, beneficially acting on skeletal muscles and promoting anti-inflammatory features in amyotrophic lateral sclerosis (ALS) microglia. Drugs potentiating the endogenous release of histamine are in trial for neurological diseases, with a role not systematically investigated in ALS. Here, we examine histamine pathway associations in ALS patients and the efficacy of a histamine-mediated therapeutic strategy in ALS mice. METHODS: We adopted an integrative multi-omics approach combining gene expression profiles, copy number variants, and single nucleotide polymorphisms of ALS patients. We treated superoxide dismutase 1 (SOD1)-G93A mice that recapitulate key ALS features, with the brain-permeable histamine precursor histidine in the symptomatic phase of the disease and analysed the rescue from disease pathological signs. We examined the action of histamine in cultured SOD1-G93A motor neuron-like cells. RESULTS: We identified 13 histamine-related genes deregulated in the spinal cord of two ALS patient subgroups, among which genes involved in histamine metabolism, receptors, transport, and secretion. Some histamine-related genes overlapped with genomic regions disrupted by DNA copy number and with ALS-linked pathogenic variants. Histidine treatment in SOD1-G93A mice proved broad efficacy in ameliorating ALS features, among which most importantly lifespan, motor performance, microgliosis, muscle atrophy, and motor neurons survival in vivo and in vitro. CONCLUSIONS: Our gene set/pathway enrichment analyses and preclinical studies started at the onset of symptoms establish that histamine-related genes are modifiers in ALS, supporting their role as candidate biomarkers and therapeutic targets. We disclose a novel important role for histamine in the characterization of the multi-gene network responsible for ALS and, furthermore, in the drug development process.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Expresión Génica/genética , Histamina/uso terapéutico , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Histamina/farmacología , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...