Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875012

RESUMEN

Force fields (FFs) are an established tool for simulating large and complex molecular systems. However, parametrizing FFs is a challenging and time-consuming task that relies on empirical heuristics, experimental data, and computational data. Recent efforts aim to automate the assignment of FF parameters using pre-existing databases and on-the-fly ab initio data. In this study, we propose a graph-based force field (GB-FFs) model to directly derive parameters for the Generalized Amber Force Field (GAFF) from chemical environments and research into the influence of functional forms. Our end-to-end parametrization approach predicts parameters by aggregating the basic information in directed molecular graphs, eliminating the need for expert-defined procedures and enhances the accuracy and transferability of GAFF across a broader range of molecular complexes. Simulation results are compared to the original GAFF parametrization. In practice, our results demonstrate an improved transferability of the model, showcasing its improved accuracy in modeling intermolecular and torsional interactions, as well as improved solvation free energies. The optimization approach developed in this work is fully applicable to other nonpolarizable FFs as well as to polarizable ones.

4.
Phys Rev E ; 108(5-1): 054902, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115420

RESUMEN

Granular flows occur in various contexts, including laboratory experiments, industrial processes, and natural geophysical flows. To investigate their dynamics, different kinds of physically based models have been developed. These models can be characterized by the length scale at which dynamic processes are described. Discrete models use a microscopic scale to individually model each grain, Navier-Stokes models use a mesoscopic scale to consider elementary volumes of grains, and thin-layer models use a macroscopic scale to model the dynamics of elementary columns of fluids. In each case, the derivation of the associated equations is well-known. However, few studies focus on the extent to which these modeling solutions yield mutually coherent results. In this article, we compare the simulations of a granular dam break on a horizontal or inclined planes for the discrete model convex optimization contact dynamics (COCD), the Navier-Stokes model Basilisk, and the thin-layer depth-averaged model SHALTOP. We show that, although all three models allow reproducing the temporal evolution of the free surface in the horizontal case (except for SHALTOP at the initiation), the modeled flow dynamics are significantly different, and, in particular, during the stopping phase. The stresses measured at the flow's bottom, reflecting the flow dynamics, are in relatively good agreement, but significant variations are obtained with the COCD model due to complex and fast-varying granular lattices. Similar conclusions are drawn using the same rheological parameters to model a granular dam break on an inclined plane. This comparison exercise is essential for assessing the limits and uncertainties of granular flow modeling.

5.
Syst Biol ; 72(6): 1387-1402, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37703335

RESUMEN

Multi-type birth-death (MTBD) models are phylodynamic analogies of compartmental models in classical epidemiology. They serve to infer such epidemiological parameters as the average number of secondary infections Re and the infectious time from a phylogenetic tree (a genealogy of pathogen sequences). The representatives of this model family focus on various aspects of pathogen epidemics. For instance, the birth-death exposed-infectious (BDEI) model describes the transmission of pathogens featuring an incubation period (when there is a delay between the moment of infection and becoming infectious, as for Ebola and SARS-CoV-2), and permits its estimation along with other parameters. With constantly growing sequencing data, MTBD models should be extremely useful for unravelling information on pathogen epidemics. However, existing implementations of these models in a phylodynamic framework have not yet caught up with the sequencing speed. Computing time and numerical instability issues limit their applicability to medium data sets (≤ 500 samples), while the accuracy of estimations should increase with more data. We propose a new highly parallelizable formulation of ordinary differential equations for MTBD models. We also extend them to forests to represent situations when a (sub-)epidemic started from several cases (e.g., multiple introductions to a country). We implemented it for the BDEI model in a maximum likelihood framework using a combination of numerical analysis methods for efficient equation resolution. Our implementation estimates epidemiological parameter values and their confidence intervals in two minutes on a phylogenetic tree of 10,000 samples. Comparison to the existing implementations on simulated data shows that it is not only much faster but also more accurate. An application of our tool to the 2014 Ebola epidemic in Sierra-Leone is also convincing, with very fast calculation and precise estimates. As MTBD models are closely related to Cladogenetic State Speciation and Extinction (ClaSSE)-like models, our findings could also be easily transferred to the macroevolution domain.


Asunto(s)
Epidemias , Fiebre Hemorrágica Ebola , Humanos , Filogenia , Fiebre Hemorrágica Ebola/epidemiología , Funciones de Verosimilitud , Modelos Epidemiológicos
7.
J Phys Chem A ; 127(15): 3543-3550, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37039518

RESUMEN

The Trotterized Unitary Coupled Cluster Single and Double (UCCSD) ansatz has recently attracted interest due to its use in Variation Quantum Eigensolver (VQE) molecular simulations on quantum computers. However, when the size of molecules increases, UCCSD becomes less interesting as it cannot achieve sufficient accuracy. Including higher-order excitations is therefore mandatory to recover the UCC's missing correlation effects. Here, we extend the Trotterized UCC approach via the addition of (true) Triple T excitations introducing UCCSDT. We also include both spin and orbital symmetries. Indeed, in practice, the latter help to reduce unnecessary circuit excitations and thus accelerate the optimization process enabling researchers to tackle larger molecules. Our initial numerical tests (12-14 qubits) show that UCCSDT improves the overall accuracy by at least two orders of magnitude with respect to standard UCCSD. Overall, the UCCSDT ansatz is shown to reach chemical accuracy and to be competitive with the CCSD(T) gold-standard classical method of quantum chemistry.

8.
J Sci Comput ; 94(1): 4, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36437820

RESUMEN

In this manuscript a POD-Galerkin based Reduced Order Model for unsteady Fluid-Structure Interaction problems is presented. The model is based on a partitioned algorithm, with semi-implicit treatment of the coupling conditions. A Chorin-Temam projection scheme is applied to the incompressible Navier-Stokes problem, and a Robin coupling condition is used for the coupling between the fluid and the solid. The coupled problem is based on an Arbitrary Lagrangian Eulerian formulation, and the Proper Orthogonal Decomposition procedure is used for the generation of the reduced basis. We extend existing works on a segregated Reduced Order Model for Fluid-Structure Interaction to unsteady problems that couple an incompressible, Newtonian fluid with a linear elastic solid, in two spatial dimensions. We consider three test cases to assess the overall capabilities of the method: an unsteady, non-parametrized problem, a problem that presents a geometrical parametrization of the solid domain, and finally, a problem where a parametrization of the solid's shear modulus is taken into account.

9.
Viruses ; 14(8)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36016399

RESUMEN

OBJECTIVE: There is extensive evidence that SARS-CoV-2 replicates in the gastrointestinal tract. However, the infectivity of virions in feces is poorly documented. Although the primary mode of transmission is airborne, the risk of transmission from contaminated feces remains to be assessed. DESIGN: The persistence of SARS-CoV-2 (infectivity and RNA) in human and animal feces was evaluated by virus isolation on cell culture and RT-qPCR, respectively. The exposure of golden Syrian hamsters to experimentally contaminated feces through intranasal inoculation has also been tested to assess the fecal-oral transmission route. RESULTS: For periods that are compatible with average intestinal transit, the SARS-CoV-2 genome was noticeably stable in human and animal feces, contrary to the virus infectivity that was reduced in a time- and temperature-dependent manner. In human stools, this reduction was variable depending on the donors. Viral RNA was excreted in the feces of infected hamsters, but exposure of naïve hamsters to feces of infected animals did not lead to any productive infection. Conversely, hamsters could be experimentally infected following exposure to spiked fresh feces. CONCLUSION: Infection following exposure to naturally contaminated feces has been suspected but has not been established so far. The present work demonstrates that SARS-CoV-2 rapidly lost infectivity in spiked or naturally infected feces. Although the possibility of persistent viral particles in human or animal feces cannot be fully ruled out, SARS-CoV-2 transmission after exposure to contaminated feces is unlikely.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Heces , Humanos , Mesocricetus , ARN Viral
10.
Environ Int ; 158: 106998, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991258

RESUMEN

Since many infected people experience no or few symptoms, the SARS-CoV-2 epidemic is frequently monitored through massive virus testing of the population, an approach that may be biased and may be difficult to sustain in low-income countries. Since SARS-CoV-2 RNA can be detected in stool samples, quantifying SARS-CoV-2 genome by RT-qPCR in wastewater treatment plants (WWTPs) has been carried out as a complementary tool to monitor virus circulation among human populations. However, measuring SARS-CoV-2 viral load in WWTPs can be affected by many experimental and environmental factors. To circumvent these limits, we propose here a novel indicator, the wastewater indicator (WWI), that partly reduces and corrects the noise associated with the SARS-CoV-2 genome quantification in wastewater (average noise reduction of 19%). All data processing results in an average correlation gain of 18% with the incidence rate. The WWI can take into account the censorship linked to the limit of quantification (LOQ), allows the automatic detection of outliers to be integrated into the smoothing algorithm, estimates the average measurement error committed on the samples and proposes a solution for inter-laboratory normalization in the absence of inter-laboratory assays (ILA). This method has been successfully applied in the context of Obépine, a French national network that has been quantifying SARS-CoV-2 genome in a representative sample of French WWTPs since March 5th 2020. By August 26th, 2021, 168 WWTPs were monitored in the French metropolitan and overseas territories of France. We detail the process of elaboration of this indicator, show that it is strongly correlated to the incidence rate and that the optimal time lag between these two signals is only a few days, making our indicator an efficient complement to the incidence rate. This alternative approach may be especially important to evaluate SARS-CoV-2 dynamics in human populations when the testing rate is low.


Asunto(s)
COVID-19 , Epidemias , Humanos , ARN Viral , SARS-CoV-2 , Aguas Residuales
13.
C R Biol ; 343(2): 177-209, 2020 Oct 09.
Artículo en Francés | MEDLINE | ID: mdl-33108121

RESUMEN

In the fight against the spread of COVID-19 the emphasis is on vaccination or on reactivating existing drugs used for other purposes. The tight links that necessarily exist between the virus as it multiplies and the metabolism of its host are systematically ignored. Here we show that the metabolism of all cells is coordinated by the availability of a core building block of the cell's genome, cytidine triphosphate (CTP). This metabolite is also the key to the synthesis of the viral envelope and to the translation of its genome into proteins. This unique role explains why evolution has led to the early emergence in animals of an antiviral immunity enzyme, viperin, that synthesizes a toxic analogue of CTP. The constraints arising from this dependency guide the evolution of the virus. With this in mind, we explored the real-time experiment taking place before our eyes using probabilistic modelling approaches to the molecular evolution of the virus. We have thus followed, almost on a daily basis, the evolution of the composition of the viral genome to link it to the progeny produced over time, particularly in the form of blooms that sparked a firework of viral mutations. Some of those certainly increase the propagation of the virus. This led us to make out the critical role in this evolution of several proteins of the virus, such as its nucleocapsid N, and more generally to begin to understand how the virus ties up the host metabolism to its own benefit. A way for the virus to escape CTP-dependent control in cells would be to infect cells that are not expected to grow, such as neurons. This may account for unexpected body sites of viral development in the present epidemic.


Dans la lutte contre la propagation de la COVID-19 l'accent est mis sur la vaccination, d'une part, et sur le redéploiement de traitements utilisés pour d'autres usages, d'autre part. Les liens qui existent nécessairement entre la multiplication du virus et le métabolisme de l'hôte sont systématiquement ignorés. Ici nous montrons que le métabolisme de toutes les cellules est coordonné par l'accessibilité d'un composant central du génome cellulaire, le triphosphate de cytidine (CTP). Ce métabolite est aussi la clé de la synthèse de l'enveloppe virale et de la traduction de son génome en protéines. Ce rôle unique explique pourquoi l'évolution a fait apparaître très tôt chez les animaux une activité enzymatique de l'immunité antivirale, la vipérine, destinée à synthétiser un analogue toxique du CTP. Les contraintes nées de cette dépendance orientent l'évolution du virus. Avec cette servitude à l'esprit, nous avons exploré l'expérience en vraie grandeur qui se déroule sous nos yeux au moyen d'approches de modélisation probabiliste de l'évolution moléculaire du virus. Nous avons ainsi suivi, presque au jour le jour, le devenir de la composition du génome viral pour la relier à la descendance produite au cours du temps, en particulier sous la forme d'efflorescences où apparaît un véritable feu d'artifice de mutations virales. Certaines d'entre elles augmentent certainement la propagation du virus. Cela nous conduit à proposer un rôle important dans cette évolution à certaines protéines du virus, comme celle de la nucléocapside N et plus généralement de commencer à comprendre comment le virus asservit à son bénéfice le métabolisme de l'hôte. L'un des moyens possibles pour le virus d'échapper au contrôle par le CTP serait d'infecter des cellules qui ne se multiplient pas, comme les neurones. Cela pourrait expliquer les sites de développement viral inattendus qu'on observe dans l'épidémie actuelle.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/fisiología , Evolución Biológica , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Animales , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , COVID-19 , Evolución Molecular , Humanos , Pandemias , SARS-CoV-2
14.
J Chem Theory Comput ; 16(7): 4150-4158, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32470306

RESUMEN

The NonCovalent Interaction index (NCI) enables identification of attractive and repulsive noncovalent interactions from promolecular densities in a fast manner. However, the approach remained up to now qualitative, only providing visual information. We present a new version of NCIPLOT, NCIPLOT4, which allows quantifying the properties of the NCI regions (volume, charge) in small and big systems in a fast manner. Examples are provided of how this new twist enables characterization and retrieval of local information in supramolecular chemistry and biosystems at the static and dynamic levels.

15.
Biology (Basel) ; 10(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396488

RESUMEN

We propose a forecasting method for predicting epidemiological health series on a two-week horizon at regional and interregional resolution. The approach is based on the model order reduction of parametric compartmental models and is designed to accommodate small amounts of sanitary data. The efficiency of the method is shown in the case of the prediction of the number of infected people and people removed from the collected data, either due to death or recovery, during the two pandemic waves of COVID-19 in France, which took place approximately between February and November 2020. Numerical results illustrate the promising potential of the approach.

16.
J Chem Phys ; 149(12): 124103, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30278683

RESUMEN

In this work, we provide the mathematical elements we think essential for a proper understanding of the calculus of the electrostatic energy of point-multipoles of arbitrary order under periodic boundary conditions. The emphasis is put on the expressions of the so-called self-parts of the Ewald summation where different expressions can be found in the literature. Indeed, such expressions are of prime importance in the context of new generation polarizable force field where the self-field appears in the polarization equations. We provide a general framework, where the idea of the Ewald splitting is applied to the electric potential and, subsequently, all other quantities such as the electric field, the energy, and the forces are derived consistently thereof. Mathematical well-posedness is shown for all these contributions for any order of multipolar distribution.

17.
Chem Sci ; 9(4): 956-972, 2018 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-29732110

RESUMEN

We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.

18.
Philos Trans A Math Phys Eng Sci ; 376(2115)2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-29431686

RESUMEN

Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process.This article is part of the theme issue 'Modern theoretical chemistry'.

19.
J Chem Theory Comput ; 13(1): 180-190, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28068773

RESUMEN

We introduce a new class of methods, denoted as Truncated Conjugate Gradient(TCG), to solve the many-body polarization energy and its associated forces in molecular simulations (i.e. molecular dynamics (MD) and Monte Carlo). The method consists in a fixed number of Conjugate Gradient (CG) iterations. TCG approaches provide a scalable solution to the polarization problem at a user-chosen cost and a corresponding optimal accuracy. The optimality of the CG-method guarantees that the number of the required matrix-vector products are reduced to a minimum compared to other iterative methods. This family of methods is non-empirical, fully adaptive, and provides analytical gradients, avoiding therefore any energy drift in MD as compared to popular iterative solvers. Besides speed, one great advantage of this class of approximate methods is that their accuracy is systematically improvable. Indeed, as the CG-method is a Krylov subspace method, the associated error is monotonically reduced at each iteration. On top of that, two improvements can be proposed at virtually no cost: (i) the use of preconditioners can be employed, which leads to the Truncated Preconditioned Conjugate Gradient (TPCG); (ii) since the residual of the final step of the CG-method is available, one additional Picard fixed point iteration ("peek"), equivalent to one step of Jacobi Over Relaxation (JOR) with relaxation parameter ω, can be made at almost no cost. This method is denoted by TCG-n(ω). Black-box adaptive methods to find good choices of ω are provided and discussed. Results show that TPCG-3(ω) is converged to high accuracy (a few kcal/mol) for various types of systems including proteins and highly charged systems at the fixed cost of four matrix-vector products: three CG iterations plus the initial CG descent direction. Alternatively, T(P)CG-2(ω) provides robust results at a reduced cost (three matrix-vector products) and offers new perspectives for long polarizable MD as a production algorithm. The T(P)CG-1(ω) level provides less accurate solutions for inhomogeneous systems, but its applicability to well-conditioned problems such as water is remarkable, with only two matrix-vector product evaluations.


Asunto(s)
Simulación de Dinámica Molecular , Termodinámica , Algoritmos , Método de Montecarlo
20.
J Chem Phys ; 144(5): 054101, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26851902

RESUMEN

We present a new algorithm to solve the polarizable continuum model equation in a framework compatible with the strategy previously developed by us for the conductor-like screening model based on Schwarz's domain decomposition method (ddCOSMO). The new discretization is systematically improvable and is fully consistent with ddCOSMO so that it reproduces ddCOSMO results for large dielectric constants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA