Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 8(1): 74, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471486

RESUMEN

Immunotherapies targeting pathological tau have recently emerged as a promising approach for treatment of neurodegenerative disorders. We have previously showed that the mouse antibody DC8E8 discriminates between healthy and pathological tau, reduces tau pathology in murine tauopathy models and inhibits neuronal internalization of AD tau species in vitro.Here we show, that DC8E8 and antibodies elicited against the first-in-man tau vaccine, AADvac1, which is based on the DC8E8 epitope peptide, both promote uptake of pathological tau by mouse primary microglia. IgG1 and IgG4 isotypes of AX004, the humanized versions of DC8E8, accelerate tau uptake by human primary microglia isolated from post-mortem aged and diseased brains. This promoting activity requires the presence of the Fc-domain of the antibodies.The IgG1 isotype of AX004 showed greater ability to promote tau uptake compared to the IgG4 isotype, while none of the antibody-tau complexes provoked increased pro-inflammatory activity of microglia. Our data suggest that IgG1 has better suitability for therapeutic development.


Asunto(s)
Vacunas contra el Alzheimer/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Encefalitis/inmunología , Microglía/inmunología , Proteínas tau/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Monoclonales Humanizados/metabolismo , Transporte Biológico , Células Cultivadas , Encefalitis/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Adulto Joven , Proteínas tau/metabolismo
2.
J Extracell Vesicles ; 9(1): 1727637, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158520

RESUMEN

Combining proteomics and systems biology approaches, we demonstrate that neonatal microglial cells derived from two different CNS locations, cortex and spinal cord, and cultured in vitro displayed different phenotypes upon different physiological or pathological conditions. These cells also exhibited greater variability in terms of cellular and small extracellular vesicles (sEVs) protein content and levels. Bioinformatic data analysis showed that cortical microglia exerted anti-inflammatory and neurogenesis/tumorigenesis properties, while the spinal cord microglia were more inflammatory. Interestingly, while both sEVs microglia sources enhanced growth of DRGs processes, only the spinal cord-derived sEVs microglia under LPS stimulation significantly attenuated glioma proliferation. These results were confirmed using the neurite outgrowth assay on DRGs cells and glioma proliferation analysis in 3D spheroid cultures. Results from these in vitro assays suggest that the microglia localized at different CNS regions can ensure different biological functions. Together, this study indicates that neonatal microglia locations regulate their physiological and pathological functional fates and could affect the high prevalence of brain vs spinal cord gliomas in adults.

3.
Neuropeptides ; 78: 101961, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31506171

RESUMEN

Brain-derived neurotrophic factor (BDNF) participates in orchestrating the adaptive response to exercise. However, the importance of transient changes in circulating BDNF for eliciting whole-body and skeletal muscle exercise benefits in humans remains relatively unexplored. Here, we investigated effects of acute aerobic exercise and 3-month aerobic-strength training on serum, plasma and skeletal muscle BDNF in twenty-two sedentary older individuals (69.0 ±â€¯8.0 yrs., 9 M/13F). BDNF response to acute exercise was additionally evaluated in young trained individuals (25.1 ±â€¯2.1 yrs., 3 M/5F). Acute aerobic exercise transiently increased serum BDNF in sedentary (16%, p = .007) but not in trained elderly or young individuals. Resting serum or plasma BDNF was not regulated by exercise training in the elderly. However, subtle training-related changes of serum BDNF positively correlated with improvements in walking speed (R = 0.59, p = .005), muscle mass (R = 0.43, p = .04) and cognitive performance (R = 0.41, p = .05) and negatively with changes in body fat (R = -0.43, p = .04) and triglyceridemia (R = -0.53, p = .01). Individuals who increased muscle BDNF protein in response to 3-month training (responders) displayed stronger acute exercise-induced increase in serum BDNF than non-responders (p = .006). In addition, muscle BDNF protein content positively correlated with type II-to-type I muscle fiber ratio (R = 0.587, p = .008) and with the rate of post-exercise muscle ATP re-synthesis (R = 0.703, p = .005). Contrary to serum, acute aerobic exercise resulted in a decline of plasma BDNF 1 h post-exercise in both elderly-trained (-34%, p = .002) and young-trained individuals (-48%, p = .034). Acute circulating BDNF regulation by exercise was dependent on the level of physical fitness and correlated with training-induced improvements in metabolic and cognitive functions. Our observations provide an indirect evidence that distinct exercise-induced changes in serum and plasma BDNF as well as training-related increase in muscle BDNF protein, paralleled by improvements in muscle and whole-body clinical phenotypes, are involved in the coordinated adaptive response to exercise in humans.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza , Adulto , Anciano , Factor Neurotrófico Derivado del Encéfalo/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno/fisiología , Aptitud Física/fisiología , Adulto Joven
4.
Peptides ; 56: 1-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24642356

RESUMEN

Irisin, myokine secreted by skeletal muscle, was suggested to mediate some of exercise health benefits via "browning" of white adipose tissue. However, mounting evidence contradicts the regulatory role of exercise for muscle irisin production/secretion in humans. Thus, we explored the direct effect of exercise-mimicking treatment on irisin in human primary muscle cells in vitro. Human primary muscle cell cultures were established from lean, obese prediabetic and type-2-diabetic individuals. Complex metabolic phenotyping included assessment of insulin sensitivity (euglycemic hyperinsulinemic clamp) and adiposity content&distribution (MRI&MRS). In vitro exercise-mimicking treatment (forskolin+ionomycin) was delivered in 1-h pulse/day during differentiation. Fndc5 mRNA (qRT-PCR) and secreted irisin (ELISA) were determined in cells and media. Exercise-mimicking treatment more than doubled Pgc1α mRNA in differentiated muscle cells. Nevertheless, Fndc5 mRNA was reduced by 18% and irisin in media by 20%. Moreover, Fncd5 mRNA was increased in myotubes derived from individuals with type-2-diabetes, independent on exercise-mimicking treatment. Fndc5 mRNA in cells was positively related to fasting glycemia (p=0.0001) and negatively to whole-body insulin sensitivity (p<0.05). Collectively, our data do not support the role of exercise-related signaling pathways in irisin regulation in human skeletal muscle and confirm our previous observations on increased Fndc5 expression in muscle cells from individuals with type-2-diabetes.


Asunto(s)
Ejercicio Físico/fisiología , Fibronectinas/genética , Fibronectinas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , ARN Mensajero/genética , Células Cultivadas , Colforsina/farmacología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ionomicina/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/citología , Obesidad/genética , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Estado Prediabético/genética , Estado Prediabético/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
J Physiol ; 592(5): 1091-107, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24297848

RESUMEN

Irisin was identified as a myokine secreted by contracting skeletal muscle, possibly mediating some exercise health benefits via 'browning' of white adipose tissue. However, a controversy exists concerning irisin origin, regulation and function in humans. Thus, we have explored Fndc5 gene and irisin protein in two clinical studies: (i) a cross-sectional study (effects of type 2 diabetes (T2D) in drug-naive men) and (ii) an intervention study (exercise effects in sedentary, overweight/obese individuals). Glucose tolerance and insulin sensitivity were assessed. Maximal aerobic capacity and muscle strength were measured before and after training. Body composition (magnetic resonance imaging), muscle and liver fat content (1H-magnetic resonance spectroscopy (MRS)) and in vivo muscle metabolism (32P-MRS) were determined. Skeletal muscle and subcutaneous abdominal adipose tissue samples were taken in the fasted state and during euglycaemic hyperinsulinaemia (adipose tissue) and before/after exercise training (muscle). We found that muscle Fndc5 mRNA was increased in prediabetes but not T2D. Fndc5 in adipose tissue and irisin in plasma were reduced in T2D by 40% and 50%, respectively. In contrast, T2D-derived myotubes expressed/secreted the highest levels of Fndc5/irisin. Neither hyperinsulinaemia (adipose tissue/plasma) nor exercise (muscle/plasma) affected Fndc5/irisin in vivo. Circulating irisin was positively associated with muscle mass, strength and metabolism and negatively with fasting glycaemia. Glucose and palmitate decreased Fndc5 mRNA in myotubes in vitro. We conclude that distinct patterns of Fndc5/irisin in muscle, adipose tissue and circulation, and concordant in vivo down-regulation in T2D, indicate that irisin might distinguish metabolic health and disease. Moreover, Fndc5/irisin was discordantly regulated in diabetic muscle and myotubes in vitro, suggesting that whole body factors, such as glucose and fatty acids, might be important for irisin regulation. Exercise did not affect Fndc5/irisin. However, irisin was positively linked to muscle mass, strength and metabolism, pointing to common regulatory factors and/or the potential for irisin to modify muscle phenotype.


Asunto(s)
Tejido Adiposo/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Terapia por Ejercicio , Fibronectinas/metabolismo , Músculo Esquelético/fisiopatología , Obesidad/fisiopatología , Adulto , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/rehabilitación , Femenino , Humanos , Masculino , Obesidad/complicaciones , Obesidad/rehabilitación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...