Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Sci Adv ; 10(32): eadp6182, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121218

RESUMEN

Endothelial cells (ECs) are highly plastic, capable of differentiating into various cell types. Endothelial-to-mesenchymal transition (EndMT) is crucial during embryonic development and contributes substantially to vascular dysfunction in many cardiovascular diseases (CVDs). While targeting EndMT holds therapeutic promise, understanding its mechanisms and modulating its pathways remain challenging. Using single-cell RNA sequencing on three in vitro EndMT models, we identified conserved gene signatures. We validated original regulators in vitro and in vivo during embryonic heart development and peripheral artery disease. EndMT induction led to global expression changes in all EC subtypes rather than in mesenchymal clusters. We identified mitochondrial calcium uptake as a key driver of EndMT; inhibiting mitochondrial calcium uniporter (MCU) prevented EndMT in vitro, and conditional Mcu deletion in ECs blocked mesenchymal activation in a hind limb ischemia model. Tissues from patients with critical limb ischemia with EndMT features exhibited significantly elevated endothelial MCU. These findings highlight MCU as a regulator of EndMT and a potential therapeutic target.


Asunto(s)
Señalización del Calcio , Células Endoteliales , Transición Epitelial-Mesenquimal , Mitocondrias , RNA-Seq , Análisis de la Célula Individual , Animales , Humanos , Mitocondrias/metabolismo , RNA-Seq/métodos , Ratones , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Canales de Calcio/metabolismo , Canales de Calcio/genética , Isquemia/metabolismo , Isquemia/patología , Calcio/metabolismo , Análisis de Expresión Génica de una Sola Célula
2.
Mol Cell ; 84(7): 1321-1337.e11, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38513662

RESUMEN

Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.


Asunto(s)
Adenosina Trifosfatasas , ATPasas Tipo P , Animales , Ratones , Humanos , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Transporte Biológico , ATPasas Tipo P/metabolismo , Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico
3.
Cell Death Dis ; 14(11): 772, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007529

RESUMEN

Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death, that has been implicated in Alzheimer's disease and Parkinson's disease. Inhibition of cystine/glutamate antiporter could lead to mitochondrial fragmentation, mitochondrial calcium ([Ca2+]m) overload, increased mitochondrial ROS production, disruption of the mitochondrial membrane potential (ΔΨm), and ferroptotic cell death. The observation that mitochondrial dysfunction is a characteristic of ferroptosis makes preservation of mitochondrial function a potential therapeutic option for diseases associated with ferroptotic cell death. Mitochondrial calcium levels are controlled via the mitochondrial calcium uniporter (MCU), the main entry point of Ca2+ into the mitochondrial matrix. Therefore, we have hypothesized that negative modulation of MCU complex may confer protection against ferroptosis. Here we evaluated whether the known negative modulators of MCU complex, ruthenium red (RR), its derivative Ru265, mitoxantrone (MX), and MCU-i4 can prevent mitochondrial dysfunction and ferroptotic cell death. These compounds mediated protection in HT22 cells, in human dopaminergic neurons and mouse primary cortical neurons against ferroptotic cell death. Depletion of MICU1, a [Ca2+]m gatekeeper, demonstrated that MICU is protective against ferroptosis. Taken together, our results reveal that negative modulation of MCU complex represents a therapeutic option to prevent degenerative conditions, in which ferroptosis is central to the progression of these pathologies.


Asunto(s)
Calcio , Ferroptosis , Animales , Humanos , Ratones , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
JACC Basic Transl Sci ; 8(7): 820-839, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37547075

RESUMEN

B-cell lymphoma 2-associated athanogene-3 (Bag3) is expressed in all animal species, with Bag3 levels being most prominent in the heart, the skeletal muscle, the central nervous system, and in many cancers. Preclinical studies of Bag3 biology have focused on animals that have developed compromised cardiac function; however, the present studies were performed to identify the pathways perturbed in the heart even before the occurrence of clinical signs of dilatation and failure of the heart. These studies show that hearts carrying variants that knockout one allele of BAG3 have significant alterations in multiple cellular pathways including apoptosis, autophagy, mitochondrial homeostasis, and the inflammasome.

5.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292659

RESUMEN

Mitochondria are versatile organelles that regulate several physiological functions. Many mitochondria-controlled processes are driven by mitochondrial Ca2+ signaling. However, role of mitochondrial Ca2+ signaling in melanosome biology remains unknown. Here, we show that pigmentation requires mitochondrial Ca2+ uptake. In vitro gain and loss of function studies demonstrated that Mitochondrial Ca2+ Uniporter (MCU) is crucial for melanogenesis while the MCU rheostats, MCUb and MICU1 negatively control melanogenesis. Zebrafish and mouse models showed that MCU plays a vital role in pigmentation in vivo. Mechanistically, MCU controls activation of transcription factor NFAT2 to induce expression of three keratins (keratin 5, 7 and 8), which we report as positive regulators of melanogenesis. Interestingly, keratin 5 in turn modulates mitochondrial Ca2+ uptake thereby this signaling module acts as a negative feedback loop that fine-tunes both mitochondrial Ca2+ signaling and melanogenesis. Mitoxantrone, an FDA approved drug that inhibits MCU, decreases physiological melanogenesis. Collectively, our data demonstrates a critical role for mitochondrial Ca2+ signaling in vertebrate pigmentation and reveal the therapeutic potential of targeting MCU for clinical management of pigmentary disorders. Given the centrality of mitochondrial Ca2+ signaling and keratin filaments in cellular physiology, this feedback loop may be functional in a variety of other pathophysiological conditions.

6.
Cell Rep ; 42(3): 112155, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36857182

RESUMEN

The most abundant cellular divalent cations, Mg2+ (mM) and Ca2+ (nM-µM), antagonistically regulate divergent metabolic pathways with several orders of magnitude affinity preference, but the physiological significance of this competition remains elusive. In mice consuming a Western diet, genetic ablation of the mitochondrial Mg2+ channel Mrs2 prevents weight gain, enhances mitochondrial activity, decreases fat accumulation in the liver, and causes prominent browning of white adipose. Mrs2 deficiency restrains citrate efflux from the mitochondria, making it unavailable to support de novo lipogenesis. As citrate is an endogenous Mg2+ chelator, this may represent an adaptive response to a perceived deficit of the cation. Transcriptional profiling of liver and white adipose reveals higher expression of genes involved in glycolysis, ß-oxidation, thermogenesis, and HIF-1α-targets, in Mrs2-/- mice that are further enhanced under Western-diet-associated metabolic stress. Thus, lowering mMg2+ promotes metabolism and dampens diet-induced obesity and metabolic syndrome.


Asunto(s)
Tejido Adiposo Pardo , Metabolismo Energético , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Proteínas de Transporte de Catión , Dieta , Dieta Alta en Grasa , Metabolismo Energético/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales , Obesidad/metabolismo , Termogénesis/genética
7.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824758

RESUMEN

Background: Type 2 diabetes (T2D) is associated with a strongly increased risk for restenosis after angioplasty driven by proliferation of vascular smooth muscle cells (VSMCs). Here, we sought to determine whether and how mitochondrial dysfunction in T2D drives VSMC proliferation with a focus on ROS and intracellular [Ca 2+ ] that both drive cell proliferation, occur in T2D and are regulated by mitochondrial activity. Methods: Using a diet-induced mouse model of T2D, the inhibition of the mitochondrial Ca 2+ /calmodulin-dependent kinase II (mtCaMKII), a regulator of Ca 2+ entry via the mitochondrial Ca 2+ uniporter selectively in VSMCs, we performed in vivo phenotyping after mechanical injury and established the mechanisms of excessive proliferation in cultured VSMCs. Results: In T2D, the inhibition of mtCaMKII reduced both neointima formation after mechanical injury and the proliferation of cultured VSMCs. VSMCs from T2D mice displayed accelerated proliferation, reduced mitochondrial Ca 2+ entry and membrane potential with elevated baseline [Ca 2+ ] cyto compared to cells from normoglycemic mice. Accelerated proliferation after PDGF treatment was driven by activation of Erk1/2 and its upstream regulators. Hyperactivation of Erk1/2 was Ca 2+ -dependent rather than mitochondrial ROS-driven Ca 2+ -dependent and included the activation of CaMKII in the cytosol. The inhibition of mtCaMKII exaggerated the Ca 2+ imbalance by lowering mitochondrial Ca 2+ entry and increasing baseline [Ca 2+ ] cyto , further enhancing baseline Erk1/2 activation. With inhibition of mtCaMKII, PDGF treatment had no additional effect on cell proliferation. Inhibition of activated CaMKII in the cytosol decreased excessive Erk1/2 activation and reduced VSMC proliferation. Conclusions: Collectively, our results provide evidence for the molecular mechanisms of enhanced VSMC proliferation after mechanical injury by mitochondrial Ca 2+ entry in T2D.

8.
Physiol Rep ; 11(3): e15588, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36754446

RESUMEN

Mitochondrial calcium (m Ca2+ ) uptake occurs via the Mitochondrial Ca2+ Uniporter (MCU) complex and plays a critical role in mitochondrial dynamics, mitophagy, and apoptosis. MCU complex activity is in part modulated by the expression of its regulatory subunits. Cardiovascular disease models demonstrated altered gene/protein expression of one or multiple subunits in different cells, including vascular endothelial cells (ECs). MCU complex activity was found necessary for stable flow (s-flow)-induced mitophagy and promotion of an atheroprotective EC phenotype. Disturbed flow (d-flow) is known to lead to an atheroprone phenotype. Despite the role of MCU in flow-regulated EC function, flow-induced alterations in MCU complex subunit expression are currently unknown. We exposed cultured human ECs to atheroprotective (steady shear stress, SS) or atheroprone flow (oscillatory shear stress, OS) and measured mRNA and protein levels of the MCU complex members. SS and OS differentially modulated subunit expression at gene/protein levels. Protein expression changes of the core MCU, m Ca2+ uptake 1 (MICU1) and MCU regulator 1 (MCUR1) subunits in SS- and OS-exposed, compared to static, ECs suggested an enhanced m Ca2+ influx under each flow and a potential contribution to EC dysfunction under OS. In silico analysis of a single-cell RNA-sequencing dataset was employed to extract transcript values of MCU subunits in mouse carotid ECs from regions exposed to s-flow or d-flow. Mcu and Mcur1 genes showed significant differences in expression after prolonged exposure to each flow. The differential expression of MCU complex subunits indicated a tight regulation of the complex activity under physiological and pathological hemodynamic conditions.


Asunto(s)
Células Endoteliales , Proteínas de Transporte de Membrana Mitocondrial , Ratones , Humanos , Animales , Células Endoteliales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Canales de Calcio/genética , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Corazón , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo
9.
Life Sci Alliance ; 6(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36754568

RESUMEN

Mitochondrial RNA splicing 2 (MRS2) forms a magnesium (Mg2+) entry protein channel in mitochondria. Whereas MRS2 contains two transmembrane domains constituting a pore on the inner mitochondrial membrane, most of the protein resides within the matrix. Yet, the precise structural and functional role of this obtrusive amino terminal domain (NTD) in human MRS2 is unknown. Here, we show that the MRS2 NTD self-associates into a homodimer, contrasting the pentameric assembly of CorA, an orthologous bacterial channel. Mg2+ and calcium suppress lower and higher order oligomerization of MRS2 NTD, whereas cobalt has no effect on the NTD but disassembles full-length MRS2. Mutating-pinpointed residues-mediating Mg2+ binding to the NTD not only selectively decreases Mg2+-binding affinity ∼sevenfold but also abrogates Mg2+ binding-induced secondary, tertiary, and quaternary structure changes. Disruption of NTD Mg2+ binding strikingly potentiates mitochondrial Mg2+ uptake in WT and Mrs2 knockout cells. Our work exposes a mechanism for human MRS2 autoregulation by negative feedback from the NTD and identifies a novel gain of function mutant with broad applicability to future Mg2+ signaling research.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas Mitocondriales , Humanos , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Retroalimentación , Magnesio/química , Magnesio/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo
10.
Sci Rep ; 12(1): 21161, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476944

RESUMEN

The mitochondrial calcium (Ca2+) uniporter (MCU) channel is responsible for mitochondrial Ca2+ influx. Its expression was found to be upregulated in endothelial cells (ECs) under cardiovascular disease conditions. Since the role of MCU in regulating cytosolic Ca2+ homeostasis in ECs exposed to shear stress (SS) is unknown, we studied mitochondrial Ca2+ dynamics (that is known to decode cytosolic Ca2+ signaling) in sheared ECs. To understand cause-and-effect, we ectopically expressed MCU in ECs. A higher percentage of MCU-transduced ECs exhibited mitochondrial Ca2+ transients/oscillations, and at higher frequency, under SS compared to sheared control ECs. Transients/oscillations correlated with mitochondrial reactive oxygen species (mROS) flashes and mitochondrial membrane potential (ΔΨm) flickers, and depended on activation of the mechanosensitive Piezo1 channel and the endothelial nitric oxide synthase (eNOS). A positive feedback loop composed of mitochondrial Ca2+ uptake/mROS flashes/ΔΨm flickers and endoplasmic reticulum Ca2+ release, in association with Piezo1 and eNOS, provided insights into the mechanism by which SS, under conditions of high MCU activity, may shape vascular EC energetics and function.


Asunto(s)
Células Endoteliales
11.
iScience ; 25(1): 103722, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35005527

RESUMEN

SARS-CoV-2 is a newly identified coronavirus that causes the respiratory disease called coronavirus disease 2019 (COVID-19). With an urgent need for therapeutics, we lack a full understanding of the molecular basis of SARS-CoV-2-induced cellular damage and disease progression. Here, we conducted transcriptomic analysis of human PBMCs, identified significant changes in mitochondrial, ion channel, and protein quality-control gene products. SARS-CoV-2 proteins selectively target cellular organelle compartments, including the endoplasmic reticulum and mitochondria. M-protein, NSP6, ORF3A, ORF9C, and ORF10 bind to mitochondrial PTP complex components cyclophilin D, SPG-7, ANT, ATP synthase, and a previously undescribed CCDC58 (coiled-coil domain containing protein 58). Knockdown of CCDC58 or mPTP blocker cyclosporin A pretreatment enhances mitochondrial Ca2+ retention capacity and bioenergetics. SARS-CoV-2 infection exacerbates cardiomyocyte autophagy and promotes cell death that was suppressed by cyclosporin A treatment. Our findings reveal that SARS-CoV-2 viral proteins suppress cardiomyocyte mitochondrial function that disrupts cardiomyocyte Ca2+ cycling and cell viability.

12.
Hum Mol Genet ; 31(3): 376-385, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34494107

RESUMEN

Calcium signaling via mitochondrial calcium uniporter (MCU) complex coordinates mitochondrial bioenergetics with cellular energy demands. Emerging studies show that the stability and activity of the pore-forming subunit of the complex, MCU, is dependent on the mitochondrial phospholipid, cardiolipin (CL), but how this impacts calcium-dependent mitochondrial bioenergetics in CL-deficiency disorder like Barth syndrome (BTHS) is not known. Here we utilized multiple models of BTHS including yeast, mouse muscle cell line, as well as BTHS patient cells and cardiac tissue to show that CL is required for the abundance and stability of the MCU-complex regulatory subunit MICU1. Interestingly, the reduction in MICU1 abundance in BTHS mitochondria is independent of MCU. Unlike MCU and MICU1/MICU2, other subunit and associated factor of the uniporter complex, EMRE and MCUR1, respectively, are not affected in BTHS models. Consistent with the decrease in MICU1 levels, we show that the kinetics of MICU1-dependent mitochondrial calcium uptake is perturbed and acute stimulation of mitochondrial calcium signaling in BTHS myoblasts fails to activate pyruvate dehydrogenase, which in turn impairs the generation of reducing equivalents and blunts mitochondrial bioenergetics. Taken together, our findings suggest that defects in mitochondrial calcium signaling could contribute to cardiac and skeletal muscle pathologies observed in BTHS patients.


Asunto(s)
Síndrome de Barth , Calcio , Animales , Síndrome de Barth/genética , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Humanos , Ratones , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
iScience ; 24(11): 103339, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34816101

RESUMEN

Transformation of naive macrophages into classically (M1) or alternatively (M2) activated macrophages regulates the inflammatory response. Here, we identified that distinct Ca2+ entry channels determine the IFNγ-induced M1 or IL-4-induced M2 transition. Naive or M2 macrophages exhibit a robust Ca2+ entry that was dependent on Orai1 channels, whereas the M1 phenotype showed a non-selective TRPC1 current. Blockade of Ca2+ entry suppresses pNF-κB/pJNK/STAT1 or STAT6 signaling events and consequently lowers cytokine production that is essential for M1 or M2 functions. Of importance, LPS stimulation shifted M2 cells from Orai1 toward TRPC1-mediated Ca2+ entry and TRPC1-/- mice exhibited transcriptional changes that suppress pro-inflammatory cytokines. In contrast, Orai1-/- macrophages showed a decrease in anti-inflammatory cytokines and exhibited a suppression of mitochondrial oxygen consumption rate and inhibited mitochondrial shape transition specifically in the M2 cells. Finally, alterations in TRPC1 or Orai1 expression determine macrophage polarization suggesting a distinct role of Ca2+ channels in modulating macrophage transformation.

14.
J Am Heart Assoc ; 10(21): e022055, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34666498

RESUMEN

Background Space travel-associated stressors such as microgravity or radiation exposure have been reported in astronauts after short- and long-duration missions aboard the International Space Station. Despite risk mitigation strategies, adverse health effects remain a concern. Thus, there is a need to develop new diagnostic tools to facilitate early detection of physiological stress. Methods and Results We measured the levels of circulating cell-free mitochondrial DNA in blood plasma of 14 astronauts 10 days before launch, the day of landing, and 3 days after return. Our results revealed a significant increase of cell-free mitochondrial DNA in the plasma on the day of landing and 3 days after return with vast ~2 to 355-fold interastronaut variability. In addition, gene expression analysis of peripheral blood mononuclear cells revealed a significant increase in markers of inflammation, oxidative stress, and DNA damage. Conclusions Our study suggests that cell-free mitochondrial DNA abundance might be a biomarker of stress or immune response related to microgravity, radiation, and other environmental factors during space flight.


Asunto(s)
Astronautas , Ácidos Nucleicos Libres de Células , ADN Mitocondrial , Vuelo Espacial , Biomarcadores/metabolismo , ADN Mitocondrial/genética , Humanos , Leucocitos Mononucleares , Viaje
16.
Aging Cell ; 20(7): e13407, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118180

RESUMEN

The mechanism of kidney injury in aging are not well understood. In order to identify hitherto unknown pathways of aging-related kidney injury, we performed RNA-Seq on kidney extracts of young and aged mice. Expression of chloride (Cl) channel accessory 1 (CLCA1) mRNA and protein was increased in the kidneys of aged mice. Immunostaining showed a marked increase in CLCLA1 expression in the proximal tubules of the kidney from aged mice. Increased kidney CLCA1 gene expression also correlated with aging in marmosets and in a human cohort. In aging mice, increased renal cortical CLCA1 content was associated with hydrogen sulfide (H2 S) deficiency, which was ameliorated by administering sodium hydrosulfide (NaHS), a source of H2 S. In order to study whether increased CLCA1 expression leads to injury phenotype and the mechanisms involved, stable transfection of proximal tubule epithelial cells overexpressing human CLCA1 (hCLCA1) was performed. Overexpression of hCLCA1 augmented Cl- current via the Ca++ -dependent Cl- channel TMEM16A (anoctamin-1) by patch-clamp studies. hCLCA1 overexpression also increased the expression of fibronectin, a matrix protein, and induced the senescence-associated secretory phenotype (SASP). Mechanistic studies underlying these changes showed that hCLCA1 overexpression leads to inhibition of AMPK activity and stimulation of mTORC1 as cellular signaling determinants of injury. Both TMEM16A inhibitor and NaHS reversed these signaling events and prevented changes in fibronectin and SASP. We conclude that CLCA1-TMEM16A-Cl- current pathway is a novel mediator of kidney injury in aging that is regulated by endogenous H2 S.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Canales de Cloruro/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factores de Edad , Animales , Callithrix , Humanos , Ratones , Ratones Endogámicos C57BL
17.
Physiol Rep ; 9(5): e14766, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33713581

RESUMEN

Recently we showed that homoarginine supplementation confers kidney protection in diabetic mouse models. In this study we tested whether the protective effect of homoarginine is nitric oxide synthase-3 (NOS3)-independent in diabetic nephropathy (DN). Experiments were conducted in NOS3 deficient (NOS3-/- ) mice and their wild type littermate using multiple low doses of vehicle or streptozotocin and treated with homoarginine via drinking water for 24 weeks. Homoarginine supplementation for 24 weeks in diabetic NOS3-/- mice significantly attenuated albuminuria, increased blood urea nitrogen, histopathological changes and kidney fibrosis, kidney fibrotic markers, and kidney macrophage recruitment compared with vehicle-treated diabetic NOS3-/- mice. Furthermore, homoarginine supplementation restored kidney mitochondrial function following diabetes. Importantly, there were no significant changes in kidney NOS1 or NOS2 mRNA expression between all groups. In addition, homoarginine supplementation improved cardiac function and reduced cardiac fibrosis following diabetes. These data demonstrate that the protective effect of homoarginine is independent of NOS3, which will ultimately change our understanding of the mechanism(s) by which homoarginine induce renal and cardiac protection in DN. Homoarginine protective effect in DN could be mediated via improving mitochondrial function.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Homoarginina/farmacología , Óxido Nítrico Sintasa de Tipo III/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estreptozocina/farmacología , Albuminuria/metabolismo , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Homoarginina/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
18.
Cell Calcium ; 94: 102333, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33450506

RESUMEN

Anti-apoptotic Bcl-2 critically controls cell death by neutralizing pro-apoptotic Bcl-2-family members at the mitochondria. Bcl-2 proteins also act at the endoplasmic reticulum, the main intracellular Ca2+-storage organelle, where they inhibit IP3 receptors (IP3R) and prevent pro-apoptotic Ca2+-signaling events. IP3R channels are targeted by the BH4 domain of Bcl-2. Some cancer types rely on the IP3R-Bcl-2 interaction for survival. We previously developed a cell-permeable, BH4-domain-targeting peptide that can abrogate Bcl-2's inhibitory action on IP3Rs, named Bcl-2 IP3 receptor disrupter-2 (BIRD-2). This peptide kills several Bcl-2-dependent cancer cell types, including diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukaemia (CLL) cells, by eliciting intracellular Ca2+ signalling. However, the exact mechanisms by which these excessive Ca2+ signals triggered by BIRD-2 provoke cancer cell death remain elusive. Here, we demonstrate in DLBCL that although BIRD-2 activates caspase 3/7 and provokes cell death in a caspase-dependent manner, the cell death is independent of pro-apoptotic Bcl-2-family members, Bim, Bax and Bak. Instead, BIRD-2 provokes mitochondrial Ca2+ overload that is rapidly followed by opening of the mitochondrial permeability transition pore (mPTP). Inhibiting mitochondrial Ca2+ overload using Ru265, an inhibitor of the mitochondrial Ca2+ uniporter complex counteracts BIRD-2-induced cancer cell death. Finally, we validated our findings in primary CLL patient samples where BIRD-2 provoked mitochondrial Ca2+ overload and Ru265 counteracted BIRD-2-induced cell death. Overall, this work reveals the mechanisms by which BIRD-2 provokes cell death, which occurs via mitochondrial Ca2+ overload but acts independently of pro-apoptotic Bcl-2-family members.


Asunto(s)
Calcio/metabolismo , Linfoma de Células B/patología , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Péptidos/química , Péptidos/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína 11 Similar a Bcl2/metabolismo , Señalización del Calcio/efectos de los fármacos , Calpaína/metabolismo , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B/enzimología , Linfoma de Células B/metabolismo , Mitocondrias/efectos de los fármacos , Dominios Proteicos
19.
Mol Metab ; 45: 101154, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359401

RESUMEN

OBJECTIVE: Insulin resistance and altered hepatic mitochondrial function are central features of type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD), but the etiological role of these processes in disease progression remains unclear. Here we investigated the molecular links between insulin resistance, mitochondrial remodeling, and hepatic lipid accumulation. METHODS: Hepatic insulin sensitivity, endogenous glucose production, and mitochondrial metabolic fluxes were determined in wild-type, obese (ob/ob) and pioglitazone-treatment obese mice using a combination of radiolabeled tracer and stable isotope NMR approaches. Mechanistic studies of pioglitazone action were performed in isolated primary hepatocytes, whilst molecular hepatic lipid species were profiled using shotgun lipidomics. RESULTS: Livers from obese, insulin-resistant mice displayed augmented mitochondrial content and increased tricarboxylic acid cycle (TCA) cycle and pyruvate dehydrogenase (PDH) activities. Insulin sensitization with pioglitazone mitigated pyruvate-driven TCA cycle activity and PDH activation via both allosteric (intracellular pyruvate availability) and covalent (PDK4 and PDP2) mechanisms that were dependent on PPARγ activity in isolated primary hepatocytes. Improved mitochondrial function following pioglitazone treatment was entirely dissociated from changes in hepatic triglycerides, diacylglycerides, or fatty acids. Instead, we highlight a role for the mitochondrial phospholipid cardiolipin, which underwent pathological remodeling in livers from obese mice that was reversed by insulin sensitization. CONCLUSION: Our findings identify targetable mitochondrial features of T2D and NAFLD and highlight the benefit of insulin sensitization in managing the clinical burden of obesity-associated disease.


Asunto(s)
Resistencia a la Insulina/fisiología , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Glucemia/metabolismo , Cardiolipinas , Ciclo del Ácido Cítrico , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Tiazolidinedionas , Triglicéridos/metabolismo
20.
Am J Physiol Cell Physiol ; 320(4): C465-C482, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296287

RESUMEN

Calcium (Ca2+) signaling is critical for cell function and cell survival. Mitochondria play a major role in regulating the intracellular Ca2+ concentration ([Ca2+]i). Mitochondrial Ca2+ uptake is an important determinant of cell fate and governs respiration, mitophagy/autophagy, and the mitochondrial pathway of apoptosis. Mitochondrial Ca2+ uptake occurs via the mitochondrial Ca2+ uniporter (MCU) complex. This review summarizes the present knowledge on the function of MCU complex, regulation of MCU channel, and the role of MCU in Ca2+ homeostasis and human disease pathogenesis. The channel core consists of four MCU subunits and essential MCU regulators (EMRE). Regulatory proteins that interact with them include mitochondrial Ca2+ uptake 1/2 (MICU1/2), MCU dominant-negative ß-subunit (MCUb), MCU regulator 1 (MCUR1), and solute carrier 25A23 (SLC25A23). In addition to these proteins, cardiolipin, a mitochondrial membrane-specific phospholipid, has been shown to interact with the channel core. The dynamic interplay between the core and regulatory proteins modulates MCU channel activity after sensing local changes in [Ca2+]i, reactive oxygen species, and other environmental factors. Here, we highlight the structural details of the human MCU heteromeric assemblies and their known roles in regulating mitochondrial Ca2+ homeostasis. MCU dysfunction has been shown to alter mitochondrial Ca2+ dynamics, in turn eliciting cell apoptosis. Changes in mitochondrial Ca2+ uptake have been implicated in pathological conditions affecting multiple organs, including the heart, skeletal muscle, and brain. However, our structural and functional knowledge of this vital protein complex remains incomplete, and understanding the precise role for MCU-mediated mitochondrial Ca2+ signaling in disease requires further research efforts.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Metabolismo Energético , Mitocondrias/metabolismo , Animales , Apoptosis , Canales de Calcio/química , Canales de Calcio/efectos de los fármacos , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Terapia Molecular Dirigida , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...