Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Nutr Food Res ; 66(8): e2100852, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35073444

RESUMEN

SCOPE: Reactive oxygen species production by innate immune cells plays a central role in host defense against invading pathogens at wound-site. A weakened host-defense results in persistent infection leading to wound chronicity. Fermented Papaya Preparation (FPP), a complex sugar matrix, bolsters respiratory burst activity and improves wound healing outcomes in chronic wound patients. The objective of the current study was to identify underlying molecular factor/s responsible for augmenting macrophage host defense mechanisms following FPP supplementation. METHODS AND RESULTS: In depth LC-MS/MS analysis of cells supplemented with FPP led to identification of myo-inositol as a key determinant of FPP activity towards improving macrophage function. Myo-inositol, in quantities that is present in FPP, significantly improved macrophage respiratory burst and phagocytosis via de novo synthesis pathway of ISYNA1. In addition, myo-inositol transporters, HMIT and SMIT1, played a significant role in such activity. Blocking these pathways using siRNA attenuated FPP-induced improved macrophage host defense activities. FPP supplementation emerged as a novel approach to increase intracellular myo-inositol levels. Such supplementation also modified wound microenvironment in chronic wound patients to augment myo-inositol levels in wound fluid. CONCLUSION: These observations indicate that myo-inositol in FPP influences multiple aspects of macrophage function critical for host defense against invading pathogens.


Asunto(s)
Azúcares , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Inositol/farmacología , Macrófagos/metabolismo
2.
J Invest Dermatol ; 142(3 Pt A): 679-691.e3, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34534575

RESUMEN

Impaired re-epithelialization characterized by hyperkeratotic nonmigratory wound epithelium is a hallmark of nonhealing diabetic wounds. In chronic wounds, the copious release of oncostatin M (OSM) from wound macrophages is evident. OSM is a potent keratinocyte (KC) activator. This work sought to understand the signal transduction pathway responsible for wound re-epithelialization, the primary mechanism underlying wound closure. Daily topical treatment of full-thickness excisional wounds of C57BL/6 mice with recombinant murine OSM improved wound re-epithelialization and accelerated wound closure by bolstering KC proliferation and migration. OSM activated the Jak-signal transducer and activator of transcription pathway as manifested by signal transducer and activator of transcription 3 phosphorylation. Such signal transduction in the human KC induced TP63, the master regulator of KC function. Elevated TP63 induced ITGB1, a known effector of KC migration. In diabetic wounds, OSM was more abundant than the level in nondiabetic wounds. However, in diabetic wounds, OSM activity was compromised by glycation. Aminoguanidine, a deglycation agent, rescued the compromised KC migration caused by glycated OSM. Finally, topical application of recombinant OSM improved KC migration and accelerated wound closure in db/db mice. This work recognizes that despite its abundance at the wound site, OSM is inactivated by glycation, and topical delivery of exogenous OSM is likely to be productive in accelerating diabetic wound closure.


Asunto(s)
Diabetes Mellitus , Repitelización , Animales , Ratones , Ratones Endogámicos C57BL , Oncostatina M , Cicatrización de Heridas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...