Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
New Phytol ; 221(3): 1503-1517, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30216451

RESUMEN

Conifers depend on complex defense systems against herbivores. Stone cells (SC) and oleoresin are physical and chemical defenses of Sitka spruce that have been separately studied in previous work. Weevil oviposit at the tip of the previous year's apical shoot (PYAS). We investigated interactions between weevil larvae and trees in controlled oviposition experiments with resistant (R) and susceptible (S) Sitka spruce. R trees have an abundance of SC in the PYAS cortex. SC are mostly absent in S trees. R trees and S trees also differ in the composition of oleoresin terpenes. Transcriptomes of R and S trees revealed differences in long-term weevil-induced responses. Performance of larvae was significantly reduced on R trees compared with S trees under experimental conditions that mimicked natural oviposition behavior at apical shoot tips and may be attributed to the effects of SC. In oviposition experiments designed for larvae to feed below the area of highest SC abundance, larvae showed an unusual feeding behavior and oleoresin appeared to function as the major defense. The results support a role for both SC and oleoresin terpenes and possible synergies between these traits in the defense syndrome of weevil-resistant Sitka spruce.


Asunto(s)
Extractos Vegetales/metabolismo , Terpenos/metabolismo , Tracheophyta/citología , Tracheophyta/metabolismo , Animales , Conducta Alimentaria , Tracto Gastrointestinal/fisiología , Regulación de la Expresión Génica de las Plantas , Larva/fisiología , Oviposición , Tracheophyta/genética , Transcriptoma/genética , Árboles/genética , Árboles/fisiología , Gorgojos/fisiología
2.
Plant Physiol ; 171(1): 152-64, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26936895

RESUMEN

Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I-IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/metabolismo , Picea/enzimología , Pinus/enzimología , Resinas de Plantas/metabolismo , Abietanos , Secuencia de Aminoácidos , Secuencia de Bases , Ácidos Carboxílicos , Clonación Molecular , Sistema Enzimático del Citocromo P-450/análisis , Sistema Enzimático del Citocromo P-450/clasificación , ADN Complementario , ADN de Plantas , Diterpenos de Tipo Kaurano/metabolismo , Escherichia coli/genética , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Giberelinas/biosíntesis , Microsomas , Fenantrenos , Filogenia , Picea/genética , Pinus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Transcriptoma
3.
Plant Physiol ; 168(1): 94-106, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25829465

RESUMEN

Western redcedar (WRC; Thuja plicata) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, particularly ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene by sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning, and functional characterization of cytochrome P450 monooxygenases, we established that trans-sabin-3-ol but not cis-sabin-3-ol is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length complementary DNA cloning, and characterization of expressed P450 proteins, we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene-specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in α- and ß-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family and is, to our knowledge, the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, also converting the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation.


Asunto(s)
Biocatálisis , Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/metabolismo , Monoterpenos/metabolismo , Thuja/enzimología , Monoterpenos Bicíclicos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudios de Asociación Genética , Hidroxilación , Datos de Secuencia Molecular , Monoterpenos/química , NAD/metabolismo , Compuestos de Fenilurea/metabolismo , Filogenia , Corteza de la Planta/metabolismo , Hojas de la Planta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Terpenos/metabolismo , Thuja/genética , Extractos de Tejidos
4.
Appl Environ Microbiol ; 80(15): 4566-76, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24837377

RESUMEN

To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals.


Asunto(s)
Escarabajos/microbiología , Ciclohexenos/metabolismo , Proteínas Fúngicas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Ophiostomatales/enzimología , Pinus/microbiología , Terpenos/metabolismo , Animales , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Patógeno , Limoneno , Oxigenasas de Función Mixta/genética , Ophiostomatales/genética , Ophiostomatales/metabolismo , Pinus/metabolismo
5.
Plant Physiol ; 162(2): 1073-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23613273

RESUMEN

Plants produce over 10,000 different diterpenes of specialized (secondary) metabolism, and fewer diterpenes of general (primary) metabolism. Specialized diterpenes may have functions in ecological interactions of plants with other organisms and also benefit humanity as pharmaceuticals, fragrances, resins, and other industrial bioproducts. Examples of high-value diterpenes are taxol and forskolin pharmaceuticals or ambroxide fragrances. Yields and purity of diterpenes obtained from natural sources or by chemical synthesis are often insufficient for large-volume or high-end applications. Improvement of agricultural or biotechnological diterpene production requires knowledge of biosynthetic genes and enzymes. However, specialized diterpene pathways are extremely diverse across the plant kingdom, and most specialized diterpenes are taxonomically restricted to a few plant species, genera, or families. Consequently, there is no single reference system to guide gene discovery and rapid annotation of specialized diterpene pathways. Functional diversification of genes and plasticity of enzyme functions of these pathways further complicate correct annotation. To address this challenge, we used a set of 10 different plant species to develop a general strategy for diterpene gene discovery in nonmodel systems. The approach combines metabolite-guided transcriptome resources, custom diterpene synthase (diTPS) and cytochrome P450 reference gene databases, phylogenies, and, as shown for select diTPSs, single and coupled enzyme assays using microbial and plant expression systems. In the 10 species, we identified 46 new diTPS candidates and over 400 putatively terpenoid-related P450s in a resource of nearly 1 million predicted transcripts of diterpene-accumulating tissues. Phylogenetic patterns of lineage-specific blooms of genes guided functional characterization.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Diterpenos/metabolismo , Biología Molecular/métodos , Plantas/genética , Plantas/metabolismo , Clonación Molecular , Minería de Datos , Bases de Datos Genéticas , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
6.
Plant Physiol ; 161(2): 600-16, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23370714

RESUMEN

Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.


Asunto(s)
Transferasas Alquil y Aril/genética , Diterpenos/análisis , Evolución Molecular , Pinus/genética , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Ácidos Carboxílicos/análisis , Ácidos Carboxílicos/metabolismo , Cromatografía Liquida , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Diterpenos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Datos de Secuencia Molecular , Fenantrenos/análisis , Fenantrenos/metabolismo , Filogenia , Pinus/clasificación , Pinus/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Especificidad de la Especie , Transcriptoma/genética
7.
J Biol Chem ; 286(24): 21145-53, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21518766

RESUMEN

The levopimaradiene/abietadiene synthase from Norway spruce (Picea abies; PaLAS) has previously been reported to produce a mixture of four diterpene hydrocarbons when incubated with geranylgeranyl diphosphate as the substrate: levopimaradiene, abietadiene, neoabietadiene, and palustradiene. However, variability in the assay products observed by GC-MS of this and orthologous conifer diterpene synthases over the past 15 years suggested that these diterpenes may not be the initial enzyme assay products but are rather the products of dehydration of an unstable alcohol. We have identified epimers of the thermally unstable allylic tertiary alcohol 13-hydroxy-8(14)-abietene as the products of PaLAS. The identification of these compounds, not previously described in conifers, as the initial products of PaLAS has considerable implications for our understanding of the complexity of the biosynthetic pathway of the structurally diverse diterpene resin acids of conifer defense.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Picea/enzimología , Terpenos/química , Abietanos/química , Alcoholes/química , Cromatografía Liquida/métodos , Escherichia coli/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos/química , Cinética , Espectrometría de Masas/métodos , Extractos Vegetales/química , Proteínas Recombinantes/química , Estereoisomerismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...