Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Sci Rep ; 13(1): 18802, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914766

RESUMEN

Medin is a common vascular amyloidogenic peptide recently implicated in Alzheimer's disease (AD) and vascular dementia and its pathology remains unknown. We aim to identify changes in transcriptomic profiles and pathways in human brain microvascular endothelial cells (HBMVECs) exposed to medin, compare that to exposure to ß-amyloid (Aß) and evaluate protection by monosialoganglioside-containing nanoliposomes (NL). HBMVECs were exposed for 20 h to medin (5 µM) without or with Aß(1-42) (2 µM) or NL (300 µg/mL), and RNA-seq with signaling pathway analyses were performed. Separately, reverse transcription polymerase chain reaction of select identified genes was done in HBMVECs treated with medin (5 µM) without or with NFκB inhibitor RO106-9920 (10 µM) or NL (300 µg/mL). Medin caused upregulation of pro-inflammatory genes that was not aggravated by Aß42 co-treatment but reversed by NL. Pathway analysis on differentially expressed genes revealed multiple pro-inflammatory signaling pathways, such as the tumor necrosis factor (TNF) and the nuclear factor-κB (NFkB) signaling pathways, were affected specifically by medin treatment. RO106-9920 and NL reduced medin-induced pro-inflammatory activation. Medin induced endothelial cell pro-inflammatory signaling in part via NFκB that was reversed by NL. This could have potential implications in the pathogenesis and treatment of vascular aging, AD and vascular dementia.


Asunto(s)
Enfermedad de Alzheimer , Demencia Vascular , Humanos , Envejecimiento/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Demencia Vascular/metabolismo , Células Endoteliales/metabolismo , Transcriptoma
2.
J Struct Biol ; 215(3): 108010, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37544372

RESUMEN

Repeat proteins are common in all domains of life and exhibit a wide range of functions. One class of repeat protein contains solenoid folds where the repeating unit consists of ß-strands separated by tight turns. ß-solenoids have distinguishing structural features such as handedness, twist, oligomerisation state, coil shape and size which give rise to their diversity. Characterised ß-solenoid repeat proteins are known to form regions in bacterial and viral virulence factors, antifreeze proteins and functional amyloids. For many of these proteins, the experimental structure has not been solved, as they are difficult to crystallise or model. Here we use various deep learning-based structure-modelling methods to discover novel predicted ß-solenoids, perform structural database searches to mine further structural neighbours and relate their predicted structure to possible functions. We find both eukaryotic and prokaryotic adhesins, confirming a known functional linkage between adhesin function and the ß-solenoid fold. We further identify exceptionally long, flat ß-solenoid folds as possible structures of mucin tandem repeat regions and unprecedentedly small ß-solenoid structures. Additionally, we characterise a novel ß-solenoid coil shape, the FapC Greek key ß-solenoid as well as plausible complexes between it and other proteins involved in Pseudomonas functional amyloid fibres.


Asunto(s)
Aprendizaje Profundo , Amiloide , Adhesinas Bacterianas
4.
Intern Emerg Med ; 18(2): 423-428, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36640228

RESUMEN

BACKGROUND: An association with aortic aneurysm has been reported among patients with atrial fibrillation (AF). The aims of this study were to investigate the prevalence of thoracic aorta aneurysm (TAA) among patients with AF and to assess whether the co-presence of TAA is associated with a higher risk of adverse clinical outcomes. METHODS AND RESULTS: Using TriNetX, a global federated health research network of anonymised electronic medical records, all adult patients with AF, were categorised into two groups based on the presence of AF and TAA or AF alone. Between 1 January 2017 and 1 January 2019, 874,212 people aged ≥ 18 years with AF were identified. Of these 17,806 (2.04%) had a TAA. After propensity score matching (PSM), 17,805 patients were included in each of the two cohorts. During the 3 years of follow-up, 3079 (17.3%) AF patients with TAA and 2772 (15.6%) patients with AF alone, developed an ischemic stroke or transient ischemic attack (TIA). The risk of ischemic stroke/TIA was significantly higher in patients with AF and TAA (HR 1.09, 95% CI 1.04-1.15; log-rank p value < 0.001) The risk of major bleeding was higher in patients with AF and TAA (OR 1.07, 95% CI 1.01-1.14), but not significant in time-dependent analysis (HR 1.04, 95% CI 0.98-1.10; log-rank p value = 0.187), CONCLUSION: This retrospective analysis reports a clinical concomitance of the two medical conditions, and shows in a PSM analysis an increased risk of ischemic events in patients affected by TAA and AF compared to AF alone.


Asunto(s)
Aneurisma de la Aorta Torácica , Fibrilación Atrial , Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Adulto , Humanos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/epidemiología , Ataque Isquémico Transitorio/epidemiología , Estudios Retrospectivos , Factores de Riesgo , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/complicaciones , Aneurisma de la Aorta Torácica/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones
5.
Aging Cell ; 22(2): e13746, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36433666

RESUMEN

Vascular amyloidosis, caused when peptide monomers aggregate into insoluble amyloid, is a prevalent age-associated pathology. Aortic medial amyloid (AMA) is the most common human amyloid and is composed of medin, a 50-amino acid peptide. Emerging evidence has implicated extracellular vesicles (EVs) as mediators of pathological amyloid accumulation in the extracellular matrix (ECM). To determine the mechanisms of AMA formation with age, we explored the impact of vascular smooth muscle cell (VSMC) senescence, EV secretion, and ECM remodeling on medin accumulation. Medin was detected in EVs secreted from primary VSMCs. Small, round medin aggregates colocalized with EV markers in decellularized ECM in vitro and medin was shown on the surface of EVs deposited in the ECM. Decreasing EV secretion with an inhibitor attenuated aggregation and deposition of medin in the ECM. Medin accumulation in the aortic wall of human subjects was strongly correlated with age and VSMC senescence increased EV secretion, increased EV medin loading and triggered deposition of fibril-like medin. Proteomic analysis showed VSMC senescence induced changes in EV cargo and ECM composition, which led to enhanced EV-ECM binding and accelerated medin aggregation. Abundance of the proteoglycan, HSPG2, was increased in the senescent ECM and colocalized with EVs and medin. Isolated EVs selectively bound to HSPG2 in the ECM and its knock-down decreased formation of fibril-like medin structures. These data identify VSMC-derived EVs and HSPG2 in the ECM as key mediators of medin accumulation, contributing to age-associated AMA development.


Asunto(s)
Vesículas Extracelulares , Músculo Liso Vascular , Humanos , Músculo Liso Vascular/metabolismo , Proteómica , Vesículas Extracelulares/metabolismo , Péptidos/metabolismo , Matriz Extracelular/metabolismo , Amiloide , Senescencia Celular , Miocitos del Músculo Liso/metabolismo
6.
Nature ; 612(7938): 123-131, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36385530

RESUMEN

Aggregates of medin amyloid (a fragment of the protein MFG-E8, also known as lactadherin) are found in the vasculature of almost all humans over 50 years of age1,2, making it the most common amyloid currently known. We recently reported that medin also aggregates in blood vessels of ageing wild-type mice, causing cerebrovascular dysfunction3. Here we demonstrate in amyloid-ß precursor protein (APP) transgenic mice and in patients with Alzheimer's disease that medin co-localizes with vascular amyloid-ß deposits, and that in mice, medin deficiency reduces vascular amyloid-ß deposition by half. Moreover, in both the mouse and human brain, MFG-E8 is highly enriched in the vasculature and both MFG-E8 and medin levels increase with the severity of vascular amyloid-ß burden. Additionally, analysing data from 566 individuals in the ROSMAP cohort, we find that patients with Alzheimer's disease have higher MFGE8 expression levels, which are attributable to vascular cells and are associated with increased measures of cognitive decline, independent of plaque and tau pathology. Mechanistically, we demonstrate that medin interacts directly with amyloid-ß to promote its aggregation, as medin forms heterologous fibrils with amyloid-ß, affects amyloid-ß fibril structure, and cross-seeds amyloid-ß aggregation both in vitro and in vivo. Thus, medin could be a therapeutic target for prevention of vascular damage and cognitive decline resulting from amyloid-ß deposition in the blood vessels of the brain.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Animales , Humanos , Ratones , Persona de Mediana Edad , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Disfunción Cognitiva , Ratones Transgénicos , Placa Amiloide/metabolismo , Proteínas tau/metabolismo
7.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012466

RESUMEN

Altered proteoglycan (PG) and glycosaminoglycan (GAG) distribution within the aortic wall has been implicated in thoracic aortic aneurysm and dissection (TAAD). This review was conducted to identify literature reporting the presence, distribution and role of PGs and GAGs in the normal aorta and differences associated with sporadic TAAD to address the question; is there enough evidence to establish the role of GAGs/PGs in TAAD? 75 studies were included, divided into normal aorta (n = 51) and TAAD (n = 24). There is contradictory data regarding changes in GAGs upon ageing; most studies reported an increase in GAG sub-types, often followed by a decrease upon further ageing. Fourteen studies reported changes in PG/GAG or associated degradation enzyme levels in TAAD, with most increased in disease tissue or serum. We conclude that despite being present at relatively low abundance in the aortic wall, PGs and GAGs play an important role in extracellular matrix maintenance, with differences observed upon ageing and in association with TAAD. However, there is currently insufficient information to establish a cause-effect relationship with an underlying mechanistic understanding of these changes requiring further investigation. Increased PG presence in serum associated with aortic disease highlights the future potential of these biomolecules as diagnostic or prognostic biomarkers.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Disección Aórtica/metabolismo , Animales , Aneurisma de la Aorta Torácica/metabolismo , Modelos Animales de Enfermedad , Glicosaminoglicanos , Humanos , Proteoglicanos/metabolismo
8.
J Hypertens ; 40(9): 1639-1646, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35943096

RESUMEN

Arterial stiffness (AS) and atrial fibrillation (AF) share commonalities in molecular and pathophysiological mechanisms and numerous studies have analyzed their reciprocal influence. The gold standard for AS diagnosis is represented by aortic pulse wave velocity, whose measurement can be affected by arrhythmias characterized by irregularities in heart rhythm, such as AF. Growing evidence show that patients with AS are at high risk of AF development. Moreover, the subset of AF patients with AS seems to be more symptomatic and rhythm control strategies are less effective in this population. Reducing AS through de-stiffening interventions may be beneficial for patients with AF and can be a new appealing target for the holistic approach of AF management. In this review, we discuss the association between AS and AF, with particular interest in shared mechanisms, clinical implications and therapeutic options.


Asunto(s)
Fibrilación Atrial , Rigidez Vascular , Aorta , Fibrilación Atrial/complicaciones , Humanos , Análisis de la Onda del Pulso , Rigidez Vascular/fisiología
9.
Arterioscler Thromb Vasc Biol ; 42(8): 1048-1059, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35770666

RESUMEN

BACKGROUND: Patients with thoracic aortopathy are at increased risk of catastrophic aortic dissection, carrying with it substantial mortality and morbidity. Although granular medial calcinosis (medial microcalcification) has been associated with thoracic aortopathy, its relationship to disease severity has yet to be established. METHODS: One hundred one thoracic aortic specimens were collected from 57 patients with thoracic aortopathy and 18 control subjects. Standardized histopathologic scores, immunohistochemistry, and nanoindentation (tissue elastic modulus) were compared with the extent of microcalcification on von Kossa histology and 18F-sodium fluoride autoradiography. RESULTS: Microcalcification content was higher in thoracic aortopathy samples with mild (n=28; 6.17 [2.71-10.39]; P≤0.00010) or moderate histopathologic degeneration (n=30; 3.74 [0.87-11.80]; P<0.042) compared with control samples (n=18; 0.79 [0.36-1.90]). Alkaline phosphatase (n=26; P=0.0019) and OPN (osteopontin; n=26; P=0.0045) staining were increased in tissue with early aortopathy. Increasingly severe histopathologic degeneration was related to reduced microcalcification (n=82; Spearman ρ, -0.51; P<0.0001)-a process closely linked with elastin loss (n=82; Spearman ρ, -0.43; P<0.0001) and lower tissue elastic modulus (n=28; Spearman ρ, 0.43; P=0.026).18F-sodium fluoride autoradiography demonstrated good correlation with histologically quantified microcalcification (n=66; r=0.76; P<0.001) and identified areas of focal weakness in vivo. CONCLUSIONS: Medial microcalcification is a marker of aortopathy, although progression to severe aortopathy is associated with loss of both elastin fibers and microcalcification.18F-sodium fluoride positron emission tomography quantifies medial microcalcification and is a feasible noninvasive imaging modality for identifying aortic wall disruption with major translational promise.


Asunto(s)
Calcinosis , Elastina , Aorta , Calcinosis/diagnóstico por imagen , Humanos , Índice de Severidad de la Enfermedad , Fluoruro de Sodio
10.
PLoS One ; 17(3): e0259608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35333865

RESUMEN

Propagation of small amyloid beta (Aß) aggregates (or seeds) has been suggested as a potential mechanism of Alzheimer's disease progression. Monitoring the propagation of Aß seeds in an organism would enable testing of this hypothesis and, if confirmed, provide mechanistic insights. This requires a contrast agent for long-term tracking of the seeds. Gold nanorods combine several attractive features for this challenging task, in particular, their strong absorbance in the infrared (enabling optoacoustic imaging) and the availability of several established protocols for surface functionalisation. In this work, polymer-coated gold nanorods were conjugated with anti-Aß antibodies and attached to pre-formed Aß seeds. The resulting complexes were characterised for their optical properties by UV/Vis spectroscopy and multispectral optoacoustic tomography. The complexes retained their biophysical properties, i.e. their ability to seed Aß fibril formation. They remained stable in biological media for at least 2 days and showed no toxicity to SH-SY5Y neuroblastoma cells up to 1.5 nM and 6 µM of gold nanorods and Aß seeds, respectively. Taken together, this study describes the first steps in the development of probes for monitoring the spread of Aß seeds in animal models.


Asunto(s)
Enfermedad de Alzheimer , Nanotubos , Enfermedad de Alzheimer/diagnóstico por imagen , Amiloide , Péptidos beta-Amiloides , Animales , Oro
11.
Interact Cardiovasc Thorac Surg ; 34(5): 892-901, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35141757

RESUMEN

OBJECTIVES: The transition of aortic dissection from acute to chronic is poorly understood. We examined time-dependent mechanical behaviour and biochemical properties of chronic dissection tissues. METHODS: Aorta samples were obtained from 14 patients with mixed aetiology who were undergoing elective surgery for chronic dissected aneurysms, ranging from 3 months to 15 years post-dissection. The tissue elastic modulus and tissue deformation following application of loading for 5 h were measured for the false lumen (FL), true lumen (TL) and flap (FP) tissues with a custom-indentation technique. Collagen, elastin and glycosaminoglycan levels were determined with established biochemical assays. Elastin fragmentation was graded from histological sections. The number of tissues characterized was as follows: FP (n = 10), TL (n = 5 for biomechanical testing, n = 8 for biochemical analysis, n = 8 for histological assessment) and FL (n = 4). RESULTS: Tissues stiffness was highest in FP [59.8 (14.8) kPa] as compared with TL [50.7 (6.2) kPa] and FL [40.5 (4.7) kPa] (P = 0.023 and P = 0.006, respectively). FP [0.5 (0.08) mm] also exhibited reduced deformation relative to TL [0.7 (0.02) mm] and FL [0.9 (0.08) mm] (P = 0.003 and P = 0.006, respectively), lowest collagen concentration [FP: 40.1 (19.6) µg/mg, TL: 59.9 (19.5) µg/mg, P = 0.008; FL: 79.1 (32.0) µg/mg, P = 0.006] and the lowest collagen: elastin ratio [0.4 (0.1)] relative to the other tissues [TL; 0.6 (0.3), P = 0.006, FL; 1.5 (0.4); P = 0.003]. Significant elastin loss was evident in the FL-stained tissue sections whereas highly aligned, long fibres were visible in the FP and TL. A linear relationship was found between the stiffness, deformation and the time from the dissection event to surgical intervention for the FP. All data are presented as median (interquartile range). CONCLUSIONS: FP exhibited reduced time-dependent deformation and distinct biochemical properties relative to TL and FL irrespective of connective tissue disorder or the anatomical region of the dissection.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/etiología , Disección Aórtica/cirugía , Aorta , Aneurisma de la Aorta Torácica/complicaciones , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/cirugía , Elastina , Humanos
12.
Interact Cardiovasc Thorac Surg ; 34(5): 833-840, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35106555

RESUMEN

OBJECTIVES: Rapid evaporative ionization mass spectrometry (REIMS) can discriminate aneurysmal from normal aortic tissue. Our objective in this work was to probe the integrity of acute dissection tissue using biomechanical, biochemical and histological techniques and demonstrate that REIMS can be used to discriminate identified differences. METHODS: Human aortic tissue was obtained from patients undergoing surgery for acute aortic dissection. Biomechanical, biochemical and histological assessment was carried out to probe mechanical properties and elastin, collagen and glycosaminoglycan composition of the tissue. Monopolar electrocautery was applied to samples and surgical aerosol aspirated and analysed by REIMS to produce mass spectral data. RESULTS: Tissue was obtained from 10 patients giving rise to 26 tissue pieces: 10 false lumen (FL), 10 dissection flap and 6 true lumen samples. Models generated from biomechanical and biochemical data showed that FL tissue was distinct from true lumen and dissection flap tissue. REIMS identified the same pattern being able to classify tissue types with 72.4% accuracy and 69.3% precision. Further analysis of REIMS data for FL tissue suggested patients formed 3 distinct clusters. Histological and biochemical assessment revealed patterns of extracellular matrix degradation within the clusters that are associated with altered tissue integrity identified using biomechanical testing. CONCLUSIONS: Structural integrity of the FL in acute Type A dissection could dictate future clinical distal disease progression. REIMS can detect differences in tissue integrity, supporting its development as a point-of-care test to guide surgical intraoperative decision-making.


Asunto(s)
Aorta , Disección Aórtica , Disección Aórtica/diagnóstico , Disección Aórtica/cirugía , Humanos , Espectrometría de Masas/métodos , Pruebas en el Punto de Atención
13.
Eur J Cardiothorac Surg ; 60(3): 562-568, 2021 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-33842942

RESUMEN

OBJECTIVES: Many intraoperative decisions regarding the extent of thoracic aortic surgery are subjective and are based on the appearance of the aorta, perceived surgical risks and likelihood of early recurrent disease. Our objective in this work was to carry out a cross-sectional study to demonstrate that rapid evaporative ionization mass spectrometry (REIMS) of electrosurgical aerosol is able to empirically discriminate ex vivo aneurysmal human thoracic aorta from normal aorta, thus providing supportive evidence for the development of the technique as a point-of-care test guiding intraoperative surgical decision-making. METHODS: Human aortic tissue was obtained from patients undergoing surgery for thoracic aortic aneurysms (n = 44). Normal aorta was obtained from a mixture of post-mortem and punch biopsies from patients undergoing coronary surgery (n = 13). Monopolar electrocautery was applied to samples and surgical aerosol aspirated and analysed by REIMS to produce mass spectral data. RESULTS: Models generated from REIMS data can discriminate aneurysmal from normal aorta with accuracy and precision of 88.7% and 85.1%, respectively. In addition, further analysis investigating aneurysmal tissue from patients with bicuspid and tricuspid aortic valves was discriminated from normal tissue and each other with accuracies and precision of 93.5% and 91.4% for control, 83.8% and 76.7% for bicuspid aortic valve and 89.3% and 86.0% for tricuspid aortic valve, respectively. CONCLUSIONS: Analysis of electrosurgical aerosol from ex vivo aortic tissue using REIMS allowed us to discriminate aneurysmal from normal aorta, supporting its development as a point-of-care test (Intelligent Knife) for guiding surgical intraoperative decision-making.


Asunto(s)
Aorta , Válvula Aórtica , Aorta/cirugía , Estudios Transversales , Humanos , Espectrometría de Masas , Pruebas en el Punto de Atención
14.
Sensors (Basel) ; 21(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652583

RESUMEN

Under physiological conditions, the cornea is exposed to various enzymes, some of them have digestive actions, such as amylase and collagenase that may change the ultrastructure (collagen morphology) and sequentially change the mechanical response of the cornea and distort vision, such as in keratoconus. This study investigates the ultrastructure and nanomechanical properties of porcine cornea following incubation with α-amylase and collagenase. Atomic force microscopy (AFM) was used to capture nanoscale topographical details of stromal collagen fibrils (diameter and D-periodicity) and calculate their elastic modulus. Samples were incubated with varying concentrations of α-amylase and collagenase (crude and purified). Dimethylmethylene blue (DMMB) assay was utilised to detect depleted glycosaminoglycans (GAGs) following incubation with amylase. Collagen fibril diameters were decreased following incubation with amylase, but not D-periodicity. Elastic modulus was gradually decreased with enzyme concentration in amylase-treated samples. Elastic modulus, diameter, and D-periodicity were greatly reduced in collagenase-treated samples. The effect of crude collagenase on corneal samples was more pronounced than purified collagenase. Amylase was found to deplete GAGs from the samples. This enzymatic treatment may help in answering some questions related to keratoconus, and possibly be used to build an empirical animal model of keratoconic corneas with different progression levels.


Asunto(s)
Córnea , Glicosaminoglicanos , Queratocono , Animales , Colágeno , Microscopía de Fuerza Atómica , Porcinos
15.
Front Neurosci ; 14: 561462, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33177976

RESUMEN

α-Synuclein (aSyn) aggregation is an attractive target for therapeutic development for a range of neurodegenerative conditions, collectively termed synucleinopathies. Here, we probe the mechanism of action of a peptide 4554W, (KDGIVNGVKA), previously identified through intracellular library screening, to prevent aSyn aggregation and associated toxicity. We utilize NMR to probe association and identify that 4554W associates with a "partially aggregated" form of aSyn, with enhanced association occurring over time. We also report the ability of 4554W to undergo modification through deamidation of the central asparagine residue, occurring on the same timescale as aSyn aggregation in vitro, with peptide modification enhancing its association with aSyn. Additionally, we report that 4554W can act to reduce fibril formation of five Parkinson's disease associated aSyn mutants. Inhibitory peptide binding to partially aggregated forms of aSyn, as identified here, is particularly attractive from a therapeutic perspective, as it would eliminate the need to administer the therapy at pre-aggregation stages, which are difficult to diagnose. Taken together the data suggest that 4554W could be a suitable candidate for future therapeutic development against wild-type, and most mutant aSyn aggregation.

16.
Alzheimers Dement (Amst) ; 12(1): e12072, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32875054

RESUMEN

INTRODUCTION: Medin, an aging-associated amyloidogenic protein, induces cerebrovascular dysfunction and inflammation. We investigated the relationship between cerebrovascular medin and Alzheimer's disease (AD) and vascular dementia (VaD). METHODS: Cerebral arteriole medin was quantified from 91 brain donors with no dementia (ND), AD, VaD, or combined AD and VaD. Correlation analyses evaluated the relationship between arteriole medin, and plaques, tangles, or white matter lesions (WML). Receiver operating characteristic and regression analyses assessed whether medin is predictive of AD or VaD versus other cerebrovascular pathologies (circle of Willis [CoW] atherosclerosis and cerebral amyloid angiopathy [CAA]). RESULTS: Arteriole medin was higher in those with AD, VaD, or combined AD/VaD versus ND (P < .05), and correlated with tangle, plaque, and WML, but not CAA or CoW atherosclerosis. Among cerebrovascular pathologies, medin was the strongest predictor of AD diagnosis, whereas CoW atherosclerosis and arteriole medin were predictors of VaD. DISCUSSION: Cerebral arteriole medin is associated with and could be a potential novel risk factor or biomarker for AD and VaD.

17.
Proc Natl Acad Sci U S A ; 117(38): 23925-23931, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900929

RESUMEN

Medin is the most common amyloid known in humans, as it can be found in blood vessels of the upper body in virtually everybody over 50 years of age. However, it remains unknown whether deposition of Medin plays a causal role in age-related vascular dysfunction. We now report that aggregates of Medin also develop in the aorta and brain vasculature of wild-type mice in an age-dependent manner. Strikingly, genetic deficiency of the Medin precursor protein, MFG-E8, eliminates not only vascular aggregates but also prevents age-associated decline of cerebrovascular function in mice. Given the prevalence of Medin aggregates in the general population and its role in vascular dysfunction with aging, targeting Medin may become a novel approach to sustain healthy aging.


Asunto(s)
Envejecimiento/metabolismo , Amiloide/metabolismo , Antígenos de Superficie/metabolismo , Proteínas de la Leche/metabolismo , Enfermedades Vasculares/metabolismo , Anciano de 80 o más Años , Amiloide/genética , Animales , Antígenos de Superficie/genética , Aorta/metabolismo , Aorta/patología , Química Encefálica/fisiología , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de la Leche/genética , Enfermedades Vasculares/patología
18.
Sci Rep ; 10(1): 10159, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576835

RESUMEN

Cyclophilin D (CypD) is a peptidyl-prolyl isomerase expressed in the nucleus and transported into the mitochondria where it is best associated with the regulation of the mitochondrial permeability transition pore (MPTP). There are, however, other possible roles of CypD in the mitochondria which may or may not be linked with the MPTP. Alpha synuclein (αSyn) is shown here to interact directly with CypD via its acidic proline-rich C-terminus region and binding at the putative ligand binding pocket of CypD. The study shows that CypD binding with soluble αSyn prevents its aggregation. Furthermore, the addition of CypD to preformed αSyn fibrils leads to the disassembly of these fibrils. Enzymatically-compromised mutants of CypD show reduced abilities to dissociate αSyn aggregates, suggesting that fibril disassembly is linked to the increased rate of peptidyl-prolyl isomerisation catalysed by CypD. Protein aggregation in the mitochondria is increasingly seen as the cause of neurodegeneration. However, protein aggregation is a reversible process but disaggregation requires help from other proteins such as isomerases and chaperones. The results here demonstrate a possible mechanism by which CypD achieves this and suggest that disaggregation could be one of the many functions of this protein.


Asunto(s)
Peptidil-Prolil Isomerasa F/metabolismo , Peptidil-Prolil Isomerasa F/fisiología , Agregado de Proteínas , Agregación Patológica de Proteínas , alfa-Sinucleína/metabolismo , Catálisis , Monoterpenos Ciclohexánicos , Técnicas In Vitro , Mitocondrias/metabolismo , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Chaperonas Moleculares , Unión Proteica , Solubilidad
19.
Biophys J ; 118(11): 2769-2782, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32402244

RESUMEN

Medin, a 50-amino-acid cleavage product of the milk fat globule-EGF factor 8 protein, is one of the most common forms of localized amyloid found in the vasculature of individuals older than 50 years. Medin induces endothelial dysfunction and vascular inflammation, yet despite its prevalence in the human aorta and multiple arterial beds, little is known about the nature of its pathology. Medin oligomers have been implicated in the pathology of aortic aneurysm, aortic dissection, and more recently, vascular dementia. Recent in vitro biomechanical measurements found increased oligomer levels in aneurysm patients with altered aortic wall integrity. Our results suggest an oligomer-mediated toxicity mechanism for medin pathology. Using lipid bilayer electrophysiology, we show that medin oligomers induce ionic membrane permeability by pore formation. Pore activity was primarily observed for preaggregated medin species from the growth-phase and rarely for lag-phase species. Atomic force microscopy (AFM) imaging of medin aggregates at different stages of aggregation revealed the gradual formation of flat domains resembling the morphology of supported lipid bilayers. Transmission electron microscopy images showed the coexistence of compact oligomers, largely consistent with the AFM data, and larger protofibrillar structures. Circular dichroism spectroscopy revealed the presence of largely disordered species and suggested the presence of ß-sheets. This observation and the significantly lower thioflavin T fluorescence emitted by medin aggregates compared to amyloid-ß fibrils, along with the absence of amyloid fibers in the AFM and transmission electron microscopy images, suggest that medin aggregation into pores follows a nonamyloidogenic pathway. In silico modeling by molecular dynamics simulations provides atomic-level structural detail of medin pores with the CNpNC barrel topology and diameters comparable to values estimated from experimental pore conductances.


Asunto(s)
Amiloide , Aorta , Péptidos beta-Amiloides , Humanos , Membrana Dobles de Lípidos , Microscopía de Fuerza Atómica
20.
J Am Heart Assoc ; 9(2): e014810, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31928157

RESUMEN

Background The function of medin, one of the most common human amyloid proteins that accumulates in the vasculature with aging, remains unknown. We aim to probe medin's role in cerebrovascular disease by comparing cerebral arterial medin content between cognitively normal and vascular dementia (VaD) patients and studying its effects on endothelial cell (EC) immune activation and neuroinflammation. We also tested whether monosialoganglioside-containing nanoliposomes could reverse medin's adverse effects. Methods and Results Cerebral artery medin and astrocyte activation were measured and compared between VaD and cognitively normal elderly brain donors. ECs were exposed to physiologic dose of medin (5 µmol/L), and viability and immune activation (interleukin-8, interleukin-6, intercellular adhesion molecule-1, and plasminogen activator inhibitor-1) were measured without or with monosialoganglioside-containing nanoliposomes (300 µg/mL). Astrocytes were exposed to vehicle, medin, medin-treated ECs, or their conditioned media, and interleukin-8 production was compared. Cerebral collateral arterial and parenchymal arteriole medin, white matter lesion scores, and astrocyte activation were higher in VaD versus cognitively normal donors. Medin induced EC immune activation (increased interleukin-8, interleukin-6, intercellular adhesion molecule-1, and plasminogen activator inhibitor-1) and reduced EC viability, which were reversed by monosialoganglioside-containing nanoliposomes. Interleukin-8 production was augmented when astrocytes were exposed to medin-treated ECs or their conditioned media. Conclusions Cerebral arterial medin is higher in VaD compared with cognitively normal patients. Medin induces EC immune activation that modulates astrocyte activation, and its effects are reversed by monosialoganglioside-containing nanoliposomes. Medin is a candidate novel risk factor for aging-related cerebrovascular disease and VaD.


Asunto(s)
Antígenos de Superficie/toxicidad , Astrocitos/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Arterias Cerebrales/efectos de los fármacos , Demencia Vascular/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Gangliósidos/farmacología , Proteínas de la Leche/toxicidad , Nanopartículas , Anciano , Anciano de 80 o más Años , Astrocitos/inmunología , Astrocitos/metabolismo , Astrocitos/patología , Estudios de Casos y Controles , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Arterias Cerebrales/inmunología , Arterias Cerebrales/metabolismo , Arterias Cerebrales/patología , Técnicas de Cocultivo , Demencia Vascular/inmunología , Demencia Vascular/metabolismo , Demencia Vascular/patología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Liposomas , Masculino , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA