Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Ann Work Expo Health ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312492

RESUMEN

Recycling demands are increasing and new biowaste plants are established. The aim of this study is to obtain knowledge about occupational hygiene in biowaste pretreatment plants. At 6 plants, bioaerosol exposure, hand hygiene, and bioaerosol concentrations in work areas were investigated repeatedly. The total inflammatory potential (TIP) of exposures was measured using the human HL-60 cell line. Exposure to airborne bacteria, bacteria able to grow anaerobic, fungi(37°C), endotoxin, and TIP differed between plants and was lowest in a plant transporting waste in closed pipes compared to plants where waste was delivered on the receiving hall floor. Conversely, high exposures were measured in a plant that also processes compost. All microbial components had an impact on TIP of workers' exposure with main effects of fungi and endotoxin. Seasonality was found for several exposures and TIP, and they were lowest in the winter. Concentrations of bacteria and fungi on workers' hands at the end of the workday were 15 times higher for production than for nonproduction workers. In work areas, the concentrations of airborne fungi were highest in the waste-receiving area. Bacteria (3.2 µm) and anaerobic bacteria (4.0 µm) were present as larger airborne particles than fungi (2.8 µm), and bacteria were largest in the waste-receiving area. The microbial community compositions of exposures and work areas differed between plants and work areas. In conclusion, measures to reduce exposure should focus on the waste-receiving area and on the production workers. Differences in exposures and community compositions were found between seasons, work areas, work groups, and plants.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39264251

RESUMEN

OBJECTIVES: We investigated associations between bioaerosol exposures and work-shift changes in lung function and inflammatory markers among recycling workers. METHODS: Inhalable dust was measured with personal samplers and analyzed for endotoxin, bacteria, and fungi (incubated at 25 °C and 37 °C) levels. Lung function (FEV1, FVC) was measured before and after work-shifts and serum concentrations of inflammatory markers (CRP, SAA, CC16, IL1B, IL2, IL4, IL5, IL6, IL8, IL10, IL13, and TNF) after the shift. Associations were explored by linear mixed-effects models. RESULTS: We included 170 measurements from 88 production workers exposed to inhalable dust, endotoxin, bacteria, and fungi (25 °C and 37 °C) at geometric mean levels of 0.6 mg/m3, 10.7 EU/m3, 1.6×104 CFU/m3, 4.4×104 CFU/m3, and 103 CFU/m3, respectively, and 14 administrative workers exposed at 7-fold lower levels. No associations were observed between bioaerosol exposures and work-shift change in lung function. IL2, IL6, IL10, and TNF concentrations were positively associated with inhalable dust levels, SAA and IL6 with bacteria, CRP, SAA, IL8, and TNF with fungi (25 °C or 37 °C), with the latter being the only statistically significant finding (exp(ß) 1.40, 95% confidence interval 1.01-1.96). CONCLUSIONS: This study of recycling workers exposed to bioaerosol levels generally below those of farmers and compost workers and above background levels did not indicate any acute effect on lung function. Several inflammatory markers tended to increase with exposure, suggesting a systemic effect. Future research should combine data from bioaerosol-exposed workers to uncover health risks that may form the basis for health-based occupational exposure limits.

3.
Environ Int ; 191: 108998, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39244956

RESUMEN

Antimicrobial resistance (AMR) is recognized as a global threat. AMR bacteria accumulate in sewage sludge however, knowledge on the persistence of human pathogens and AMR in the sludge line of the wastewater treatment is limited. Sludge can be used, with or without additional treatment, as fertilizer in agricultural fields. The aim of this study is to obtain knowledge about presence of human pathogens and AMR in the sewage sludge, before and after the anaerobic digestion (AD) applying innovative combinations of methods. Fifty sludge samples were collected. Cultivation methods combined with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and Antibiotic Susceptibility Test (AST) were used obtaining knowledge about the microbial community, pathogens, and antibiotic resistant bacteria while the droplet digital Polymerase Chain Reaction (ddPCR) was performed to detect most common AMR genes. In total, 231 different bacterial species were identified in the samples. The most abundant species were spore-forming facultative anaerobic bacteria belonging to Bacillus and Clostridium genera. The AD causes a shift in the microbial composition of the sludge (p = 0.04). Seven pathogenic bacterial species constituting 188 colonies were isolated and tested for susceptibility to Clindamycin, Meropenem, Norfloxacin, Penicillin G, and Tigecycline. Of the Clostridium perfringens and Bacillus cereus isolates 67 and 50 %, respectively, were resistant to Clindamycin. Two B. cereus and two C. perfringens isolates were also resistant to other antibiotics showing multidrug resistance. ARGs (blaOXA, blaTEM, ermB, qnrB, tet(A)-(W), sulI-II) were present at 7-8 Log gene copies/kg of sludge. AD is the main driver of a reduction of some ARGs (1 Log) but resistant bacteria were still present. The results showed the usefulness of the integration of the proposed analytical methods and suggest a decrease in the risk of presence of cultivable pathogens including resistant isolates after AD but a persistent risk of ARGs' horizontal transmission.


Asunto(s)
Antibacterianos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana , Aguas Residuales/microbiología
4.
Sci Total Environ ; 951: 175471, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137839

RESUMEN

Significant quantities of salmon are processed daily in the industry's indoor facilities. Occupational exposure contributes to an individual's exposome. The aim of this study is to obtain knowledge about potential exposure to viable airborne species of bacteria and fungi as related to workstations in the salmon processing industry. The study was conducted in nine salmon plants along the Norwegian coast over one or two days with a one-year interval. The MAS100 was used for sampling and MALDI-TOF MS for species identification. The geometric mean concentrations of bacteria and fungi were 200 CFU/m3 and 50 CFU/m3, respectively, with the highest concentrations of bacteria found in slaughtering areas and fungi in trimming of fillets. In total 125 gram-negative and 90 gram-positive bacterial and 32 different fungal species were identified. Some genera were represented by several species e.g. Chryseobacterium (15 species), Flavobacterium (13 species), Microbacterium (12 species), Pseudomonas (37 species), and Psychrobacter (13 species). Risk class 2 (RC2, human pathogens) were found in all types of workstations and plants. Seventeen bacterial species belong to RC2, some were fish pathogens, food spoilage bacteria, or species causing foodborne disease. Among fungi, Aspergillus nidulans was frequently detected across different workstations and plants. In conclusion, bacterial and fungal concentrations were low. Fish and sea-related bacteria were found along the salmon processing line. Bacterial concentrations and species compositions differ between workstations. No particular bacterial or fungal species constituted a large fraction of all airborne species. Based on the presence of human pathogens, using protective gloves is important for the workers. The presence of human and fish pathogens and food spoilage bacteria reveals air as a transmission route for bacteria, potentially affecting workers, consumers, fish, and hygiene of processing equipment. To limit the spread of these bacteria an interdisciplinary cooperation with a One Health perspective may be relevant.


Asunto(s)
Microbiología del Aire , Bacterias , Monitoreo del Ambiente , Hongos , Salmón , Animales , Hongos/clasificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Noruega , Salmón/microbiología , Exposición Profesional , Industria de Procesamiento de Alimentos , Humanos , Contaminantes Ocupacionales del Aire/análisis
5.
Sci Total Environ ; 944: 173880, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38857796

RESUMEN

In the last decade, extensive fungal growth has developed in Danish museums parallel to climate change, challenging occupational health and heritage preservation. The growth was unexpected as the museums strived to control relative humidity below 60 %, and it should exceed 75 % to risk growth. A Danish case study found xerophilic Aspergillus species able to grow at low relative humidity in a museum repository. This cross-sectional study aimed to examine whether xerophilic growth from Aspergillus section Restricti has become a novel contaminant nationally distributed in Danish museum repositories striving to control relative humidity according to international environmental recommendations for heritage collections. The study examined The National Museum of Denmark and eight large State Recognized museums distributed throughout Denmark. It was based on 600 swab and tape-lift samples and 60 MAS100-Eco and filter air samples analyzed for fungi with cultivation and morphological identification, Big-Dye-Sanger sequencing, CaM-Nanopore and ITS-Illumina amplicon sequencing. The study showed growth from seven xerophilic Aspergillus species: A. conicus, A. domesticus, A. glabripes, A. halophilicus, A. magnivesiculatus, A. penicilloides, A. vitricola, of which three are new to Denmark, and 13 xerotolerant Aspergillus species. There was no growth from other fungal species. The multiple detection approach provided a broad characterization; however, there was variance in the detected species depending on the analysis approach. Cultivation and Big-Dye Sanger sequencing showed the highest Aspergillus diversity, detecting 17 species; CaM-Nanopore amplicon sequencing detected 12 species; and ITS-illumina amplicon sequencing detected two species but the highest overall diversity. Cultivation, followed by Big-Dye Sanger and CaM-amplicon sequencing, proved the highest compliance. The study concluded that xerophilic Aspergillus growth is nationally distributed and suggests species from Aspergillus section Restricti as a novel contaminant in climate-controlled museum repositories. To safeguard occupational health and heritage preservation research in sustainable solutions, avoiding xerophilic growth in museum collections is most important.


Asunto(s)
Aspergillus , Museos , Dinamarca , Estudios Transversales , Monitoreo del Ambiente , Microbiología del Aire , Cambio Climático
6.
Sci Total Environ ; 946: 174016, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38908595

RESUMEN

Assessment of occupational exposure to viruses is crucial to identify virus reservoirs and sources of dissemination at an early stage and to help prevent spread between employees and to the general population. Measuring workers' exposure can facilitate assessment of the effectiveness of protective and mitigation measures in place. The aim of this scoping review is to give an overview of available methods and those already implemented for airborne virus' exposure assessment in different occupational and indoor environments. The results retrieved from the different studies may contribute to the setting of future standards and guidelines to ensure a reliable risk characterization in the occupational environments crucial for the implementation of effective control measures. The search aimed at selecting studies between January 1st 2010 and June 30th 2023 in the selected databases. Fifty papers on virus exposure assessment fitted the eligibility criteria and were selected for data extraction. Overall, this study identified gaps in knowledge regarding virus assessment and pinpointed the needs for further research. Several discrepancies were found (transport temperatures, elution steps, …), as well as a lack of publication of important data related to the exposure conditions (contextual information). With the available information, it is impossible to compare results between studies employing different methods, and even if the same methods are used, different conclusions/recommendations based on the expert judgment have been reported due to the lack of consensus in the contextual information retrieved and/or data interpretation. Future research on the field targeting sampling methods and in the laboratory regarding the assays to employ should be developed bearing in mind the different goals of the assessment.


Asunto(s)
Microbiología del Aire , Monitoreo del Ambiente , Exposición Profesional , Monitoreo del Ambiente/métodos , Humanos , Virus/aislamiento & purificación
7.
Waste Manag ; 183: 290-301, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38788497

RESUMEN

This study aims to investigate the microbiological working environment of biowaste workers, focusing on airborne fungal and bacterial species exposure, size distribution, and species on workers' hands. The research, conducted across six plants with 45 personal exposure assessments, revealed a total of 150 bacterial species and 47 fungal species on workers' hands, including 19 and 9 species classified in risk class 2 (RC2), respectively. Workers' exposure analysis identified 172 bacterial and 32 fungal species, with several in RC2. In work areas, 55 anaerobic bacterial species belonging to RC2 were found. Different species compositions were observed in various particle size fractions, with the highest species richness for anaerobic bacteria in the fraction potentially depositing in the secondary bronchi and for fungi in the pharynx fraction. The geometric mean aerodynamic diameter (DG) of RC2 anaerobic bacteria was 3.9 µm, <1.6 µm for Streptomyces, 3.4 µm for Aspergillus, and 2.0 µm for Penicillium. Overlapping species were identified on workers' hands, in their exposure, and in work areas, with Bacillus amyloliquefaciens, Leuconostoc mesenteroides, Bacillus cereus, Enterococcus casseliflavus, and Aspergillus niger consistently present. While the majority of RC2 bacterial species lacked documented associations with occupational health problems, certain bacteria and fungi, including Bacillus cereus, Escherichia coli, Enterobacter, Klebsiella pneumonia, Aspergillus fumigatus, Aspergillus niger, Aspergillus flavus, Lichtheimia corymbifera, Lichtheimia ramosa, and Paecilomyces variotii, have previously been linked to occupational health issues. In conclusion, biowaste workers were exposed to a wide range of microorganisms including RC2 species which would deposit in different parts of the airways.


Asunto(s)
Microbiología del Aire , Bacterias , Hongos , Exposición Profesional , Humanos , Hongos/clasificación , Hongos/aislamiento & purificación , Bacterias/clasificación , Mano/microbiología , Monitoreo del Ambiente , Exposición por Inhalación/estadística & datos numéricos , Contaminantes Ocupacionales del Aire/análisis
8.
Sci Total Environ ; 923: 171189, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447726

RESUMEN

Antifungal resistance has emerged as a significant health concern with increasing reports of resistant variants in previously susceptible species. At present, little is known about occupational exposure to antifungal-resistant fungi. This study aimed to investigate Danish workers' occupational exposure to airborne fungi resistant to first-line treatment drugs. A retrospective study was performed on a unique collection of personal exposure samples gathered over a twenty-year period from Danish working environments, in sectors including agriculture, animal handling, waste management, and healthcare. A total of 669 samples were cultivated at 37 °C and fungal colonies were identified using MALDI-TOF MS. Subsequently, identification was confirmed by amplicon sequencing the genes of calmodulin and beta-tubulin to unveil potential cryptic species. Infectious fungi (495 isolates from 23 species) were tested for resistance against Itraconazole, Voriconazole, Posaconazole, and Amphotericin B. Working environments were highly variable in the overall fungal exposure, and showed vastly different species compositions. Resistance was found in 30 isolates of the species Aspergillus fumigatus (4 of 251 isolates), A. nidulans (2 of 13), A. niger complex (19 of 131), A. versicolor (3 of 18), and A. lentulus (2 of 2). Sequence analysis revealed several cryptic species within the A. niger complex including A. tubingensis, A. luchuensis, and A. phoenicis. Among the resistant A. fumigatus isolates, two contained the well-described TR34/L98H mutation in the cyp51A gene and promoter region, while the remainder harbored silent mutations. The results indicate that the working environment significantly contributes to exposure to resistant fungi, with particularly biofuel plant workers experiencing high exposure. Differences in the prevalence of resistance across working environments may be linked to the underlying species composition.


Asunto(s)
Antifúngicos , Proteínas Fúngicas , Antifúngicos/farmacología , Estudios Retrospectivos , Proteínas Fúngicas/genética , Hongos , Itraconazol , Aspergillus fumigatus , Pruebas de Sensibilidad Microbiana , Azoles
9.
Front Public Health ; 12: 1332078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420031

RESUMEN

Objective: Children who start in day-care have 2-4 times as many respiratory infections compared to children who are cared for at home, and day-care staff are among the employees with the highest absenteeism. The extensive new knowledge that has been generated in the COVID-19 era should be used in the prevention measures we prioritize. The purpose of this narrative review is to answer the questions: Which respiratory viruses are the most significant in day-care centers and similar indoor environments? What do we know about the transmission route of these viruses? What evidence is there for the effectiveness of different non-pharmaceutical prevention measures? Design: Literature searches with different terms related to respiratory infections in humans, mitigation strategies, viral transmission mechanisms, and with special focus on day-care, kindergarten or child nurseries, were conducted in PubMed database and Web of Science. Searches with each of the main viruses in combination with transmission, infectivity, and infectious spread were conducted separately supplemented through the references of articles that were retrieved. Results: Five viruses were found to be responsible for ≈95% of respiratory infections: rhinovirus, (RV), influenza virus (IV), respiratory syncytial virus (RSV), coronavirus (CoV), and adenovirus (AdV). Novel research, emerged during the COVID-19 pandemic, suggests that most respiratory viruses are primarily transmitted in an airborne manner carried by aerosols (microdroplets). Conclusion: Since airborne transmission is dominant for the most common respiratory viruses, the most important preventive measures consist of better indoor air quality that reduces viral concentrations and viability by appropriate ventilation strategies. Furthermore, control of the relative humidity and temperature, which ensures optimal respiratory functionality and, together with low resident density (or mask use) and increased time outdoors, can reduce the occurrence of respiratory infections.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Niño , Humanos , Pandemias , Aerosoles y Gotitas Respiratorias , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , Adenoviridae
10.
Ann Work Expo Health ; 68(1): 58-77, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-37995292

RESUMEN

This cross-sectional study aims to obtain knowledge about workers' exposure to airborne dust, bacterial and fungal species, endotoxin, biofilm formation, and hydrogen sulfide (H2S) in drilling waste treatment plants. In total, 408 full-shift personal samples, 66 work areas, 40 drilling waste, and reference (outdoor air and seawater) samples were analyzed. Some workers were exposed to high levels of endotoxin (207 EU/m3), bacteria (3.8 × 104 colony forming units (CFU)/m3 and 9.8 × 104 DNA copies/m3), or fungi (1.4 × 107 CFU/m3 and 3,600 copies/m3). The exposure levels to endotoxin, bacteria, and peaks of H2S were dependent on the treatment technique. All types of drilling waste contained large concentrations of bacteria compared to the seawater references. Elevated concentrations of airborne bacteria were found close to drilling waste basins. In total, 116, 146, and 112 different bacterial species were found in workers' exposure, work areas, and the drilling waste, respectively. An overlap in bacterial species found in the drilling waste and air (personal and work area) samples was found. Of the bacterial species found, 49 are classified as human pathogens such as Escherichia coli, Enterobacter cloacae, and Klebsiella oxytoca. In total, 44 fungal species were found in the working environment, and 6 of these are classified as human pathogens such as Aspergillus fumigatus. In conclusion, across the drilling waste treatment plants, human pathogens were present in the drilling waste, and workers' exposure was affected by the drilling waste treated at the plants with elevated exposure to endotoxin and bacteria. Elevated exposure was related to working as apprentices or chemical engineers, and working with cleaning, or slop water, and working in the daytime.


Asunto(s)
Contaminantes Ocupacionales del Aire , Sulfuro de Hidrógeno , Exposición Profesional , Humanos , Exposición Profesional/análisis , Endotoxinas/análisis , Estudios Transversales , Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Microbiología del Aire , Monitoreo del Ambiente , Hongos , Bacterias
11.
Chemosphere ; 345: 140449, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839747

RESUMEN

In a recent estimate, 96 million tons of hazardous waste were produced in the European Union, most of which were handled among the member states. Organophosphate esters (OPEs) are applied as flame retardants and plasticizers and are present in many products, e.g., electronics, which end up in the hazardous waste stream upon disposal. Given the growing body of information suggesting potential adverse health effects of OPEs, waste recycling workers who handle hazardous waste could potentially be at risk of elevated exposure to these chemicals. Using silicone wristbands, we evaluated OPE exposure among waste recycling workers who handled hazardous waste and compared their exposure to that of administrative workers from the same waste companies. Wristbands were extracted and analyzed for six OPEs, which were all detected in >75% of wristbands. Overall, the sum of tris(2-chloroisopropyl) phosphate (∑TCIPP) isomers was the most abundant OPE across all wristbands collected within the study. In general, the sum of tri(methyl phenyl) phosphate isomers (∑TMPP) was elevated for all waste workers (10ß = 7.9), whereas tri-n-butyl phosphate (TnBP), tris(1,3-dichloroisopropyl) phosphate (TDCIPP), and ∑TMPP were 3-12 times higher among those specifically handling electronic and hazardous waste compared to the administrative workers (p < 0.05). Repeated wristband measurements from the same worker had fair to good consistency in OPE concentrations (intraclass correlation coefficients = 0.54-0.77), except for the two most volatile chlorinated OPEs. Taken together, our results suggest that waste recycling workers who handle electronic and hazardous waste have significantly elevated exposure to OPEs, and efforts to reduce these exposures should be considered.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Retardadores de Llama , Humanos , Siliconas , Organofosfatos , Fosfatos , Retardadores de Llama/análisis , Residuos Peligrosos , Ésteres , Dinamarca , Monitoreo del Ambiente
12.
Int J Hyg Environ Health ; 253: 114240, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37633050

RESUMEN

This study assessed microorganisms in personal inhalable work air samples aiming to identify potential human pathogens, and correlate exposure to adverse health outcomes in waste workers. Full-shift personal exposure was measured in six different waste sorting plants. Microbial concentrations in inhalable air samples were analysed using MALDI-TOF MS for cultivable, and next generation sequencing (NGS) for non-cultivable microorganisms. Concentrations of bacterial and fungal CFUs varied substantially within and between waste sorting plants, ranging from no identifiable organisms to a maximum concentration in the order of 105 CFU/m3. Bacillus and Staphylococcus were among the most abundant bacterial genera, whilst fungal genera were dominated by Aspergillus and Penicillium. Approximately 15% of all identified species were human pathogens classified in risk group 2, whereas 7% belonged to risk group 1. Furthermore, significant correlations between concentrations of fungi in risk group 1 and self-reported adverse symptoms, such as wheezing were identified in exposed workers. The combination of culture-based methods and NGS facilitated the investigation of infectious microbial species with potential pathophysiological properties as well as non-infectious biological agents in inhalable work air samples and thereby contributed to the risk assessment of occupational exposure in waste sorting.


Asunto(s)
Exposición Profesional , Humanos , Medición de Riesgo , Autoinforme , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Ann Work Expo Health ; 67(7): 831-846, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300561

RESUMEN

Indoor microbial exposure may cause negative health effects. Only little is known about the occupational microbial exposure in nursing homes and the factors that influence the exposure. The exposure in nursing homes may be increased due to close contact with elderly persons who may carry infectious or antimicrobial-resistant microorganisms and due to handling of laundry, such as used clothing and bed linen. We investigated the microbial exposure in 5 nursing homes in Denmark, by use of personal bioaerosol samples from different groups of staff members taken during a typical working day, stationary bioaerosol measurements taken during various work tasks, sedimented dust samples, environmental surface swabs, and swabs from staff members' hands. From the samples, we explored bacterial and fungal concentrations and species composition, endotoxin levels, and antimicrobial resistance in Aspergillus fumigatus isolates. Microbial concentrations from personal exposure samples differed among professions, and geometric means (GM) were 2,159 cfu/m3 (84 to 1.5 × 105) for bacteria incubated on nutrient agar, 1,745 cfu/m3 (82 to 2.0 × 104) for bacteria cultivated on a Staphylococcus selective agar, and 16 cfu/m3 air for potential pathogenic fungi incubated at 37 °C (below detection limit to 257). Bacterial exposures were elevated during bed making. On surfaces, the highest bacterial concentrations were found on bed railings. The majority of bacterial species found were related to the human skin microflora, such as different Staphylococcus and Corynebacterium species. Endotoxin levels ranged from 0.02 to 59.0 EU/m3, with a GM of 1.5 EU/m3. Of 40 tested A. fumigatus isolates, we found one multiresistant isolate, which was resistant towards both itraconazole and voriconazole, and one isolate resistant towards amphotericin B. In conclusion, we give an overview of the general microbial exposure in nursing homes and show that microbial exposures are higher for staff with more care and nursing tasks compared with administrative staff.


Asunto(s)
Contaminantes Ocupacionales del Aire , Antiinfecciosos , Exposición Profesional , Humanos , Anciano , Exposición Profesional/análisis , Endotoxinas/análisis , Agar , Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente , Bacterias , Staphylococcus
14.
Waste Manag ; 167: 173-182, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37269581

RESUMEN

Biowaste pretreatment plants have been built within the last years in Denmark in order to recycle pre-sorted biowaste from houses, restaurants, and industry. We investigated the association between exposure and health at six biowaste pretreatment plants (visited twice) across Denmark. We measured the personal bioaerosol exposure, took blood samples, and administered a questionnaire. Thirty-one persons participated, 17 of them twice, resulting in 45 bioaerosol samples, 40 blood samples, and questionnaire answers from 21 persons. We measured exposure to bacteria, fungi, dust, and endotoxin, the total inflammatory potential of the exposures, and serum levels of the inflammatory markers serum amyloid A (SAA), high sensitivity C-reactive protein (hsCRP), and human club cell protein (CC16). Higher exposures to fungi and endotoxin were found for workers with tasks inside the production area compared to workers with main tasks in the office area. A positive association was found between the concentration of anaerobic bacteria and hsCRP and SAA, whereas bacteria and endotoxin were inversely associated with hsCRP and SAA. A positive association between hsCRP and the fungal species Penicillium digitatum and P. camemberti were found, whereas an inverse association between hsCRP and Aspergillus niger and P. italicum were found. Staff with tasks inside the production area reported more symptoms of the nose than those working in the office area. To conclude, our results indicate that workers with tasks inside the production area are exposed to elevated levels of bioaerosols, and that this may affect workers' health negatively.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Humanos , Exposición Profesional/análisis , Contaminantes Ocupacionales del Aire/análisis , Proteína C-Reactiva , Monitoreo del Ambiente/métodos , Bacterias , Endotoxinas/análisis , Plantas , Inflamación/inducido químicamente , Polvo/análisis , Microbiología del Aire , Hongos , Aerosoles
15.
UCL Open Environ ; 5: e056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229345

RESUMEN

The aim of this study is to obtain knowledge about which cultivable bacterial species are present in indoor air in homes, and whether the concentration and diversity of airborne bacteria are associated with different factors. Measurements have been performed for one whole year inside different rooms in five homes and once in 52 homes. Within homes, a room-to-room variation for concentrations of airborne bacteria was found, but an overlap in bacterial species was found across rooms. Eleven species were found very commonly and included: Acinetobacter lowffii, Bacillus megaterium, B. pumilus, Kocuria carniphila, K. palustris, K. rhizophila, Micrococcus flavus, M. luteus, Moraxella osloensis and Paracoccus yeei. The concentrations of Gram-negative bacteria in general and the species P. yeei were significantly associated with the season with the highest concentrations in spring. The concentrations of P. yeei, K. rhizophila and B. pumilus were associated positively with relative humidity (RH), and concentrations of K. rhizophila were associated negatively with temperature and air change rate (ACR). Micrococcus flavus concentrations were associated negatively with ACR. Overall, this study identified species which are commonly present in indoor air in homes, and that the concentrations of some species were associated with the factors: season, ACR and RH.

16.
Ann Work Expo Health ; 67(7): 816-830, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37191914

RESUMEN

INTRODUCTION: Recycling of domestic waste and a number of employees in the recycling industry is expected to increase. This study aims to quantify current exposure levels of inhalable dust, endotoxin, and microorganisms and to identify determinants of exposure among recycling workers. METHODS: This cross-sectional study included 170 full-shift measurements from 88 production workers and 14 administrative workers from 12 recycling companies in Denmark. The companies recycle domestic waste (sorting, shredding, and extracting materials from waste). We collected inhalable dust with personal samplers that were analysed for endotoxin (n = 170) and microorganisms (n = 101). Exposure levels of inhalable dust, endotoxin, and microorganisms and potential determinants of exposure were explored by mixed-effects models. RESULTS: The production workers were 7-fold or higher exposed to inhalable dust, endotoxin, bacteria, and fungi than the administrative workers. Among production workers recycling domestic waste, the geometric mean exposure level was 0.6 mg/m3 for inhalable dust, 10.7 endotoxin unit (EU)/m3 for endotoxin, 1.6 × 104 colony forming units (CFU)/m³ of bacteria, 4.4 × 104 CFU/m³ of fungi (25 °C), and 1.0 × 103 CFU/m³ of fungi (37 °C). Workers handling paper or cardboard had higher exposure levels than workers handling other waste fractions. The temperature did not affect exposure levels, although there was a tendency toward increased exposure to bacteria and fungi with higher temperatures. For inhalable dust and endotoxin, exposure levels during outdoor work were low compared to indoor work. For bacteria and fungi, indoor ventilation decreased exposure. The work task, waste fraction, temperature, location, mechanical ventilation, and the company size explained around half of the variance of levels of inhalable dust, endotoxin, bacteria, and fungi. CONCLUSION: The production workers of the Danish recycling industry participating in this study had higher exposure levels of inhalable dust, endotoxin, bacteria, and fungi than the administrative workers. Exposure levels of inhalable dust and endotoxin among recycling workers in Denmark were generally below established or suggested occupational exposure limits (OEL). However, 43% to 58% of the individual measurements of bacteria and fungi were above the suggested OEL. The waste fraction was the most influential determinant for exposure, and the highest exposure levels were seen during handling paper or cardboard. Future studies should examine the relationship between exposure levels and health effects among workers recycling domestic waste.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Humanos , Exposición Profesional/análisis , Endotoxinas/análisis , Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Estudios Transversales , Monitoreo del Ambiente , Exposición por Inhalación/análisis , Bacterias , Hongos , Dinamarca
17.
Water Res ; 231: 119625, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36680819

RESUMEN

Work in wastewater treatment plants (WWTPs) can be associated with exposure to airborne microorganisms and endotoxin from the working environment. The aim of this study was to obtain knowledge about whether serum levels of the markers of systemic inflammation, C-reactive protein (CRP) and serum amyloid A (SAA), are associated with personal exposure to endotoxin, measured using the Limulus (endotoxinLimulus) and the rFC (endotoxinrFC) assays, as well as bacteria and fungi in a cohort of WWTP workers. Exposure and blood samples were collected for 11 workers over one year. Exposure to endotoxinLimulus-day and endotoxinrFC-day correlated significantly (r = 0.80, p<0.0001, n = 104), but endotoxinLimulus-day was 4.4 (Geometric mean (GM) value) times higher than endotoxinrFC-day (p<0.0001). The endotoxinLimulus-day, endotoxinrFC-day, bacteria, and fungal exposure as well as serum levels of CRP-day (GM=1.4 mg/l) and SAA-day (GM=12 mg/l) differed between workers. Serum levels of SAAday correlated significantly with CRPday (r = 0.30, p = 0.0068). The serum levels of CRPday were associated significantly with exposure to endotoxinLimulus-day. Exposure, SAA and CRP data were also analyzed as av. of each season, and SAAseason was associated positively and significantly with endotoxinLimulus-season and endotoxinrFC-season and negatively with fungalseason exposure. In conclusion, CRPday was associated with the endotoxinLimulus-day and SAAseason with endotoxinLimulus-season and endotoxinrFC-season exposure. Thus, we hereby document that WWTP workers are exposed to airborne endotoxin which seems to have a negative impact on their health.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Purificación del Agua , Humanos , Endotoxinas , Exposición Profesional/análisis , Contaminantes Ocupacionales del Aire/análisis , Estudios de Cohortes , Monitoreo del Ambiente/métodos , Bacterias , Biomarcadores , Inflamación , Microbiología del Aire , Hongos , Polvo/análisis
18.
Am J Infect Control ; 51(8): 938-957, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36535318

RESUMEN

BACKGROUND: Human rhinoviruses (RVs) are the most common cause of acute respiratory tract illness and upper respiratory tract infections, traditionally defined as 'common colds'. Experimental transmission of RV has been studied for more than 50 years. However, there are divergent results as to whether hands and fomites or aerosols constitute the dominant route of transmission in natural settings. METHODS: We have systematically reviewed the literature according to the PRISMA 2020 statement. Searches were run in PubMed and Web of Science until August 2022. Inclusion criteria were original studies of relevance for revealing the route of transmission of rhinovirus in humans. RESULTS: The search yielded 663 results, and 25 studies met the inclusion criteria and were selected for this review. These articles addressing RV transmission routes were assigned to 1 of 3 groups: (1) indirect transmission by fomites and hands, (2) direct transmission via large aerosols (droplets) or small aerosols, or (3) transmission either direct via large aerosols (droplets) or small aerosols and fomite or hands. CONCLUSIONS: We found low evidence, that transmission via hands and fomite followed by self-inoculation is the dominant transmission route in real-life indoor settings. We found moderate evidence, that airborne transmission either via large aerosols or small aerosols is the major transmission route of rhinovirus transmission in real-life indoor settings. This suggests that the major transmission route of RVs in many indoor settings is through the air (airborne transmission).


Asunto(s)
Resfriado Común , Humanos , Rhinovirus , Aerosoles y Gotitas Respiratorias , Fómites
19.
Environ Res ; 218: 115040, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521541

RESUMEN

Occupational exposure during waste sorting is associated with several health outcomes. This study obtained knowledge about the impact of work in fully automated waste sorting plants (AWSP; n = 3) vs manual waste sorting plants (MWSP; n = 3) on personal exposure (n = 71) to bioaerosols and exposure-related health effects. Personal full-shift air samples were collected using various filter-based active sampling devices that were placed in the workers' breathing zone. Personal exposure to inhalable and thoracic dust, endotoxin and microorganisms varied considerably between and within types of waste sorting plants (WSP). Workers at AWSP were on average exposed to 0.34 mg/m3 inhalable dust, 0.15 mg/m3 thoracic dust, and 51 EU/m3 endotoxins (geometric mean (GM) levels), whereas GM exposure levels at MWSP were 0.66 mg/m3 for inhalable dust, 0.44 mg/m3 for thoracic dust, and 32 EU/m3 for endotoxins. Exposure to submicronic fungal fragments did not differ between types of plants and ranged from levels below the detection limit (limit of detection, LOD) to levels in the order of 106 fragments/m3. Higher levels of fungal fragments and fungal spores were found at AWSP compared to MWSP with a GM of 2.1 × 105 spores/m3and with a GM of 1.2 × 105 spores/m3, respectively. Actinobacterial spores were found in samples from AWSP only, with exposure levels ranging from 1.9 × 104 to 1.1 × 107 spores/m3. Exposure to microbial DNA varied within and between WSP and was on average in the order of 104 copies/m3 for fungi and 105 copies/m3 for bacteria. Health symptoms, such as sneezing, congested nose and runny nose were significantly more common among exposed workers compared to the unexposed control group.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Humanos , Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente , Exposición por Inhalación/análisis , Exposición Profesional/análisis , Endotoxinas , Plantas , Polvo/análisis , Microbiología del Aire
20.
Environ Res ; 216(Pt 2): 114642, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306875

RESUMEN

Pigeon breeding is associated with exposure to airborne microorganisms and endotoxin and with symptoms of the airways. Antibiotic resistance is a threat to human health. Some pigeons participate in national and international indoor exhibitions. This study aims to obtain knowledge about the potential human exposure to dust, endotoxin, fungi, and bacteria including the methicillin-resistant Staphylococcus aureus (MRSA) in a pigeon exhibition in Denmark. In walking areas for visitors, airborne microorganisms in different size fractions able to enter the airways were sampled and following identified. The average concentrations were: 5000 cfu fungi/m3, 1.8 × 104 cfu bacteria/m3, 37 endotoxin units/m3, and 0.18 mg dust/m3 air with the highest concentrations in-between rows with pigeon cages. The fungal species Wallemia sp. and Aspergillus versicolor and the bacterial species S. equorum and S. aureus were found in high concentrations. MRSA spa type t034 described to be associated with livestock was found in the air. Most of the S. aureus was present in the size fraction of 1.1-2.1 µm, which are particles able to enter the human terminal bronchi. In conclusion, fungi, bacteria, and endotoxin, respectively, were found in concentrations 10, 2000, and 200 times higher than outdoor references. The airborne bacteria in the exhibition were mainly species found previously in pigeon coops showing that the pigeons are the sources of exposure. The presence of airborne MRSA in the pigeon exhibition highlights the importance of also considering this environment as a potential place of exchange of resistant bacteria between animals and between animals and humans.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Exposición Profesional , Animales , Humanos , Polvo , Columbidae , Endotoxinas/análisis , Staphylococcus aureus , Exposición Profesional/análisis , Bacterias , Hongos , Microbiología del Aire
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...