Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1228907, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744345

RESUMEN

Background: YKL-40, also known as chitinase-3-like protein 1 (CHI3L1), is a secreted glycoprotein produced by various cell types including stromal, immune, and cancer cells. It contributes to cancer progression through tumor-promoting inflammation and has been shown to inhibit the cytotoxicity of T and NK lymphocytes. In vivo studies have demonstrated synergistic anti-cancer effects of blocking YKL-40 in combination with immune checkpoint inhibitors (ICIs). Biomarkers for the prediction of the response to ICIs are highly needed. We investigated the association between plasma YKL-40 and clinical benefit and survival in patients with metastatic pancreatic cancer (mPC) receiving ICIs and stereotactic body radiotherapy (SBRT). Methods: Blood samples were collected from 84 patients with mPC who participated in the randomized phase II CheckPAC study, in which patients received nivolumab with or without ipilimumab combined with a single fraction of SBRT. Plasma YKL-40 was measured using a commercial ELISA kit. Results: Elevated baseline plasma YKL-40 was an independent predictor of shorter overall survival (OS) (HR 2.19, 95% CI 1.21-3.95). A ≥ 40% decrease in plasma YKL-40 during treatment was associated with longer progression-free survival (p = 0.009) and OS (p = 0.0028). There was no correlation between plasma YKL-40 and the tumor burden marker CA19-9 at baseline or during treatment. Conclusion: This study contributes new knowledge regarding YKL-40 as a predictor of clinical benefit from ICIs and radiotherapy. These exploratory results warrant further investigation of YKL-40 as a biomarker for patients treated with immunotherapies. Clinical trial registration: Clinicaltrials.gov, identifier NCT02866383.

2.
Int J Cancer ; 153(12): 2068-2081, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37602921

RESUMEN

Tumor progression and response to treatment are highly affected by interactions between cancer cells and the tumor microenvironment (TME). Many of the soluble factors and signaling receptors involved in this crosstalk are shed by a disintegrin and metalloproteinases (ADAMs). Upregulation of ADAM15 has been linked to worse survival in cancer patients and a tumor-promoting function both in vitro and in murine cancer models. Although ADAM15 has been involved in cell-cell and cell-extracellular matrix interactions, its role in the crosstalk between cancer cells and the TME in vivo remains unexplored. Therefore, we aimed to understand how ADAM15 regulates the cell composition of the TME and how it affects tumor progression. Here, we showed an upregulation of ADAM15 in tumor tissues from rectal cancer patients. Subcutaneous injection of wildtype and ADAM15-knockout CT26 colon cancer cells in syngeneic mice confirmed the protumorigenic role of ADAM15. Profiling of tumors revealed higher immune cell infiltration and cancer cell apoptosis in the ADAM15-deficient tumors. Specifically, loss of ADAM15 led to a reduced number of granulocytes and higher infiltration of antigen-presenting cells, including dendritic cells and macrophages, as well as more T cells. Using in vitro assays, we confirmed the regulatory effect of ADAM15 on macrophage migration and identified ADAM15-derived CYR61 as a potential molecular mediator of this effect. Based on these findings, we speculate that targeting ADAM15 could increase the infiltration of immune cells in colorectal tumors, which is a prerequisite for effective immunotherapy.


Asunto(s)
Neoplasias Colorrectales , Microambiente Tumoral , Humanos , Ratones , Animales , Transducción de Señal , Movimiento Celular , Neoplasias Colorrectales/genética , Proteínas de la Membrana , Proteínas ADAM/genética
3.
JCI Insight ; 7(18)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-35998057

RESUMEN

Macrophages in the tumor microenvironment have a substantial impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of A Disintegrin and Metalloproteinase (ADAM) proteases, which are key mediators of cell-cell signaling, to the expression of protumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several protumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified heparin-binding EGF (HB-EGF) and amphiregulin, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-Seq and ELISA experiments revealed that ADAM17-dependent HB-EGF ligand release induced the expression and secretion of CXCL chemokines in macrophages, which in turn stimulated cancer cell invasion. In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.


Asunto(s)
Proteína ADAM17 , Desintegrinas , Macrófagos , Invasividad Neoplásica , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Anfirregulina , Animales , Factor de Crecimiento Epidérmico , Receptores ErbB/metabolismo , Heparina , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Humanos , Ligandos , Macrófagos/metabolismo , Ratones , Microambiente Tumoral
4.
Matrix Biol ; 111: 307-328, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35878760

RESUMEN

Thrombospondin-1 (TSP-1) is a matricellular protein with a multitude of functions in the pericellular and extracellular environment. We report a novel pathway for the regulation of extracellular TSP-1, governed by the endocytic collagen receptor, uPARAP (urokinase plasminogen activator receptor-associated protein; MRC2 gene product, also designated Endo180, CD280). First, using a novel proteomic approach for unbiased identification of ligands for endocytosis, we identify TSP-1 as a candidate ligand for specific uptake by uPARAP. We then show that uPARAP can efficiently internalize TSP-1 for lysosomal degradation, that this capability is not shared by other, closely related endocytic receptors and that uPARAP serves to regulate the extracellular levels of TSP-1 in vitro. Using wild type and uPARAP null mice, we also demonstrate uPARAP-mediated endocytosis of TSP-1 in dermal fibroblasts in vivo. Unlike other uPARAP ligands, the interaction with TSP-1 is sensitive to heparin and the responsible molecular motifs in uPARAP are overlapping, but not identical with those governing the interaction with collagens. Finally, we show that uPARAP can also mediate the endocytosis of TSP-2, a thrombospondin closely related to TSP-1, but not the more distantly related members of the same protein family, TSP-3, -4 and -5. These findings indicate that the role of uPARAP in ECM remodeling is not limited to the uptake of collagen for degradation but also includes an orchestrator function in the regulation of thrombospondins with numerous downstream effects. This is likely to be an important factor in the physiological and pathological roles of uPARAP in bone biology, fibrosis and cancer. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD031272.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Trombospondina 1/metabolismo , Animales , Colágeno/metabolismo , Endocitosis , Ligandos , Ratones , Ratones Noqueados , Proteómica , Trombospondina 1/genética
5.
Cell Mol Life Sci ; 79(4): 204, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35332383

RESUMEN

Due to activation of fibroblast into cancer-associated fibroblasts, there is often an increased deposition of extracellular matrix and fibrillar collagens, e.g. type III collagen, in the tumor microenvironment (TME) that leads to tumor fibrosis (desmoplasia). Tumor fibrosis is closely associated with treatment response and poor prognosis for patients with solid tumors. To assure that the best possible treatment option is provided for patients, there is medical need for identifying patients with high (or low) fibrotic activity in the TME. Measuring unique collagen fragments such as the pro-peptides released into the bloodstream during fibrillar collagen deposition in the TME can provide a non-invasive measure of the fibrotic activity. Based on data from 8 previously published cohorts, this review provides insight into the prognostic value of quantifying tumor fibrosis by measuring the pro-peptide of type III collagen in serum of a total of 1692 patients with different solid tumor types and discusses the importance of tumor fibrosis for understanding prognosis and for potentially guiding future drug development efforts that aim at overcoming the poor outcome associated with a fibrotic TME.


Asunto(s)
Colágeno Tipo III , Neoplasias , Colágeno , Fibrosis , Humanos , Péptidos , Microambiente Tumoral
6.
Matrix Biol Plus ; 13: 100101, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35198964

RESUMEN

Increased remodeling of the extracellular matrix in malignant tumors has been shown to correlate with tumor aggressiveness and a poor prognosis. This remodeling involves degradation of the original extracellular matrix (ECM) and deposition of a new tumor-supporting ECM. The main constituent of the ECM is collagen and collagen turnover mainly occurs in a sequential manner, where initial proteolytic cleavage of the insoluble fibers is followed by cellular internalization of large well-defined collagen fragments for lysosomal degradation. However, despite extensive research in the field, a lack of consensus on which cell types within the tumor microenvironment express the involved proteases still exists. Furthermore, the relative contribution of different cell types to collagen internalization is not well-established. Here, we developed quantitative ex vivo collagen degradation assays and show that the proteases responsible for the initial collagen cleavage in two murine syngeneic tumor models are matrix metalloproteinases produced by cancer-associated fibroblasts and that collagen degradation fragments are endocytosed primarily by tumor-associated macrophages and cancer-associated fibroblasts from the tumor stroma. Using tumors from mannose receptor-deficient mice, we show that this receptor is essential for collagen-internalization by tumor-associated macrophages. Together, these findings identify the cell types responsible for the entire collagen degradation pathway, from initial cleavage to endocytosis of fragments for intracellular degradation.

7.
Nat Commun ; 12(1): 2550, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953176

RESUMEN

Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development. Indeed, we show that Ambra1 deficiency confers accelerated tumor growth and decreased overall survival in Braf/Pten-mutated mouse models of melanoma. Also, we demonstrate that Ambra1 deletion promotes melanoma aggressiveness and metastasis by increasing cell motility/invasion and activating an EMT-like process. Moreover, we show that Ambra1 deficiency in melanoma impacts extracellular matrix remodeling and induces hyperactivation of the focal adhesion kinase 1 (FAK1) signaling, whose inhibition is able to reduce cell invasion and melanoma growth. Overall, our findings identify a function for AMBRA1 as tumor suppressor in melanoma, proposing FAK1 inhibition as a therapeutic strategy for AMBRA1 low-expressing melanoma.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Melanoma/genética , Melanoma/metabolismo , Animales , Autofagia/fisiología , Beclina-1/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Melanoma/patología , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal , Transcriptoma
8.
J Immunol ; 205(5): 1461-1472, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32839214

RESUMEN

Tumor-associated macrophages (TAMs) support tumor growth by suppressing the activity of tumor-infiltrating T cells. Consistently, TAMs are considered a major limitation for the efficacy of cancer immunotherapy. However, the molecular reason behind the acquisition of an immunosuppressive TAM phenotype is not fully clarified. During tumor growth, the extracellular matrix (ECM) is degraded and substituted with a tumor-specific collagen-rich ECM. The collagen density of this tumor ECM has been associated with poor patient prognosis but the reason for this is not well understood. In this study, we investigated whether the collagen density could modulate the immunosuppressive activity of TAMs. The murine macrophage cell line RAW 264.7 was three-dimensionally cultured in collagen matrices of low and high collagen densities mimicking healthy and tumor tissue, respectively. Collagen density did not affect proliferation or viability of the macrophages. However, whole-transcriptome analysis revealed a striking response to the surrounding collagen density, including the regulation of immune regulatory genes and genes encoding chemokines. These transcriptional changes were shown to be similar in murine bone marrow-derived macrophages and TAMs isolated from murine tumors. Strikingly, coculture assays with primary T cells showed that macrophages cultured in high-density collagen were less efficient at attracting cytotoxic T cells and capable of inhibiting T cell proliferation more than macrophages cultured in low-density collagen. Our study demonstrates that a high collagen density can instruct macrophages to acquire an immunosuppressive phenotype. This mechanism could reduce the efficacy of immunotherapy and explain the link between high collagen density and poor prognosis.


Asunto(s)
Colágeno/inmunología , Tolerancia Inmunológica/inmunología , Macrófagos/inmunología , Animales , Línea Celular , Proliferación Celular/fisiología , Supervivencia Celular/inmunología , Quimiocinas/inmunología , Matriz Extracelular/inmunología , Femenino , Perfilación de la Expresión Génica/métodos , Inmunoterapia/métodos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Transcripción Genética/inmunología , Microambiente Tumoral/inmunología
9.
Cell Mol Life Sci ; 77(16): 3161-3176, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32100084

RESUMEN

As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.


Asunto(s)
Colágeno/inmunología , Animales , Endocitosis/inmunología , Matriz Extracelular/inmunología , Fibrosis/inmunología , Humanos , Neoplasias/inmunología
10.
J Immunother Cancer ; 7(1): 68, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30867051

RESUMEN

BACKGROUND: Tumor progression is accompanied by dramatic remodeling of the surrounding extracellular matrix leading to the formation of a tumor-specific ECM, which is often more collagen-rich and of increased stiffness. The altered ECM of the tumor supports cancer growth and metastasis, but it is unknown if this effect involves modulation of T cell activity. To investigate if a high-density tumor-specific ECM could influence the ability of T cells to kill cancer cells, we here studied how T cells respond to 3D culture in different collagen densities. METHODS: T cells cultured in 3D conditions surrounded by a high or low collagen density were imaged using confocal fluorescent microscopy. The effects of the different collagen densities on T cell proliferation, survival, and differentiation were examined using flow cytometry. Cancer cell proliferation in similar 3D conditions was also measured. Triple-negative breast cancer specimens were analyzed for the number of infiltrating CD8+ T cells and for the collagen density. Whole-transcriptome analyses were applied to investigate in detail the effects of collagen density on T cells. Computational analyses were used to identify transcription factors involved in the collagen density-induced gene regulation. Observed changes were confirmed by qRT-PCR analysis. RESULTS: T cell proliferation was significantly reduced in a high-density matrix compared to a low-density matrix and prolonged culture in a high-density matrix led to a higher ratio of CD4+ to CD8+ T cells. The proliferation of cancer cells was unaffected by the surrounding collagen-density. Consistently, we observed a reduction in the number of infiltrating CD8+ T-cells in mammary tumors with high collagen-density indicating that collagen-density has a role in regulating T cell abundance in human breast cancer. Whole-transcriptome analysis of 3D-cultured T cells revealed that a high-density matrix induces downregulation of cytotoxic activity markers and upregulation of regulatory T cell markers. These transcriptional changes were predicted to involve autocrine TGF-ß signaling and they were accompanied by an impaired ability of tumor-infiltrating T cells to kill autologous cancer cells. CONCLUSIONS: Our study identifies a new immune modulatory mechanism, which could be essential for suppression of T cell activity in the tumor microenvironment.


Asunto(s)
Colágeno/metabolismo , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Matriz Extracelular , Perfilación de la Expresión Génica , Humanos , Inmunomodulación , Activación de Linfocitos/genética , Linfocitos Infiltrantes de Tumor/patología , Neoplasias/patología , Microambiente Tumoral/genética
11.
Matrix Biol Plus ; 1: 100003, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33543002

RESUMEN

Macrophage plasticity, cellular origin, and phenotypic heterogeneity are perpetual challenges for studies addressing the biology of this pivotal immune cell in development, homeostasis, and tissue remodeling/repair. Consequently, a myriad of macrophage subtypes has been described in these contexts. To facilitate the identification of functional macrophage subtypes in vivo, here we used a flow cytometry-based assay that allows for detailed phenotyping of macrophages engaged in extracellular matrix (ECM) degradation. Of the five macrophage subtypes identified in the remodeling dermis by using this assay, collagen degradation was primarily executed by Ly6C - CCR2 + and Ly6C - CCR2 low macrophages via mannose receptor-dependent collagen endocytosis, while Ly6C + CCR2 + macrophages were the dominant fibrin-endocytosing cells. Unexpectedly, the CCL2/MCP1-CCR2 signaling axis was critical for both collagen and fibrin degradation, while collagen degradation was independent of IL-4Ra signaling. Furthermore, the cytokine GM-CSF selectively enhanced collagen degradation by Ly6C + CCR2 + macrophages. This study reveals distinct subsets of macrophages engaged in ECM turnover and identifies novel wound healing-associated functions for CCL2 and GM-CSF inflammatory cytokines.

12.
J Cell Biol ; 218(1): 333-349, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30366943

RESUMEN

Collectins such as mannose-binding lectin (MBL) and surfactant protein D (SP-D) become temporarily deposited in extravascular compartments after tissue injury and perform immune-stimulatory or inflammation-limiting functions. However, their turnover mechanisms, necessary to prevent excessive tissue damage, are virtually unknown. In this study, we show that fibroblasts in injured tissues undertake the clearance of collectins by using the endocytic collagen receptor uPARAP. In cellular assays, several types of collectins were endocytosed in a highly specific uPARAP-dependent process, not shared by the closely related receptor MR/CD206. When introduced into dermis or bleomycin-injured lungs of mice, collectins MBL and SP-D were endocytosed and routed for lysosomal degradation by uPARAP-positive fibroblasts. Fibroblast-specific expression of uPARAP governed endogenous SP-D levels and overall survival after lung injury. In lung tissue from idiopathic pulmonary fibrosis patients, a strong up-regulation of uPARAP was observed in fibroblasts adjacent to regions with SP-D secretion. This study demonstrates a novel immune-regulatory function of fibroblasts and identifies uPARAP as an endocytic receptor in immunity.


Asunto(s)
Fibroblastos/inmunología , Lesión Pulmonar/inmunología , Lectina de Unión a Manosa/inmunología , Lectinas de Unión a Manosa/inmunología , Glicoproteínas de Membrana/inmunología , Fibrosis Pulmonar/inmunología , Proteína D Asociada a Surfactante Pulmonar/inmunología , Receptores de Superficie Celular/inmunología , Animales , Bleomicina/administración & dosificación , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Endocitosis , Fibroblastos/patología , Expresión Génica , Humanos , Inmunidad Innata , Interleucina-6/genética , Interleucina-6/inmunología , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Pulmón/inmunología , Pulmón/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Lesión Pulmonar/mortalidad , Lisosomas/inmunología , Lisosomas/metabolismo , Receptor de Manosa , Lectina de Unión a Manosa/genética , Lectinas de Unión a Manosa/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteolisis , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/mortalidad , Proteína D Asociada a Surfactante Pulmonar/genética , Receptores de Superficie Celular/genética , Análisis de Supervivencia
13.
J Biol Chem ; 291(6): 2577-82, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26719335

RESUMEN

The membrane-anchored serine prostasin (CAP1/PRSS8) is essential for barrier acquisition of the interfollicular epidermis and for normal hair follicle development. Consequently, prostasin null mice die shortly after birth. Prostasin is found in two forms in the epidermis: a one-chain zymogen and a two-chain proteolytically active form, generated by matriptase-dependent activation site cleavage. Here we used gene editing to generate mice expressing only activation site cleavage-resistant (zymogen-locked) endogenous prostasin. Interestingly, these mutant mice displayed normal interfollicular epidermal development and postnatal survival, but had defects in whisker and pelage hair formation. These findings identify two distinct in vivo functions of epidermal prostasin: a function in the interfollicular epidermis, not requiring activation site cleavage, that can be mediated by the zymogen-locked version of prostasin and a proteolysis-dependent function of activated prostasin in hair follicles, dependent on zymogen conversion by matriptase.


Asunto(s)
Precursores Enzimáticos/metabolismo , Folículo Piloso/enzimología , Serina Endopeptidasas/metabolismo , Animales , Activación Enzimática , Precursores Enzimáticos/genética , Ratones , Serina Endopeptidasas/genética
14.
J Pathol ; 238(1): 120-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26466547

RESUMEN

In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen receptor, uPARAP/Endo180, is expressed on various mesenchymal cell types and is involved in bone matrix turnover during normal bone growth. Human osteosarcoma specimens showed strong expression of this receptor on tumour cells, along with the collagenolytic metalloprotease, MT1-MMP. In advanced tumours with ongoing bone degeneration, sarcoma cells positive for these proteins formed a contiguous layer aligned with the degradation zones. Remarkably, osteoclasts were scarce or absent from these regions and quantitative analysis revealed that this scarcity marked a strong contrast between osteosarcoma and bone metastases of carcinoma origin. This opened the possibility that sarcoma cells might directly mediate bone degeneration. To examine this question, we utilized a syngeneic, osteolytic bone tumour model with transplanted NCTC-2472 sarcoma cells in mice. When analysed in vitro, these cells were capable of degrading the protein component of surface-labelled bone slices in a process dependent on MMP activity and uPARAP/Endo180. Systemic treatment of the sarcoma-inoculated mice with a mouse monoclonal antibody that blocks murine uPARAP/Endo180 led to a strong reduction of bone destruction. Our findings identify sarcoma cell-resident uPARAP/Endo180 as a central player in the bone degeneration of advanced tumours, possibly following an osteoclast-mediated attack on bone in the early tumour stage. This points to uPARAP/Endo180 as a promising therapeutic target in osteosarcoma, with particular prospects for improved neoadjuvant therapy.


Asunto(s)
Neoplasias Óseas/patología , Osteólisis/metabolismo , Osteosarcoma/patología , Receptores Mitogénicos/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Invasividad Neoplásica , Osteoclastos/patología , Osteólisis/etiología , Osteólisis/patología
15.
Blood ; 127(9): 1085-96, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26647393

RESUMEN

Extravascular fibrin deposition accompanies many human diseases and causes chronic inflammation and organ damage, unless removed in a timely manner. Here, we used intravital microscopy to investigate how fibrin is removed from extravascular space. Fibrin placed into the dermis of mice underwent cellular endocytosis and lysosomal targeting, revealing a novel intracellular pathway for extravascular fibrin degradation. A C-C chemokine receptor type 2 (CCR2)-positive macrophage subpopulation constituted the majority of fibrin-uptaking cells. Consequently, cellular fibrin uptake was diminished by elimination of CCR2-expressing cells. The CCR2-positive macrophage subtype was different from collagen-internalizing M2-like macrophages. Cellular fibrin uptake was strictly dependent on plasminogen and plasminogen activator. Surprisingly, however, fibrin endocytosis was unimpeded by the absence of the fibrin(ogen) receptors, αMß2 and ICAM-1, the myeloid cell integrin-binding site on fibrin or the endocytic collagen receptor, the mannose receptor. The study identifies a novel fibrin endocytic pathway engaged in extravascular fibrin clearance and shows that interstitial fibrin and collagen are cleared by different subsets of macrophages employing distinct molecular pathways.


Asunto(s)
Endocitosis , Fibrina/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Animales , Bioensayo , Receptor 1 de Quimiocinas CX3C , Proliferación Celular , Fibrinolisina/metabolismo , Ratones , Células Mieloides/metabolismo , Plasminógeno/metabolismo , Activadores Plasminogénicos/metabolismo , Proteolisis , Receptores de Quimiocina/metabolismo , Receptores de Péptidos/metabolismo
16.
J Biol Chem ; 291(15): 8070-89, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26663085

RESUMEN

Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung.


Asunto(s)
Colágeno/metabolismo , Gelatinasas/metabolismo , Pulmón/patología , Proteínas de la Membrana/metabolismo , Fibrosis Pulmonar/patología , Serina Endopeptidasas/metabolismo , Animales , Células Cultivadas , Endopeptidasas , Fibroblastos/metabolismo , Fibroblastos/patología , Gelatinasas/genética , Eliminación de Gen , Humanos , Pulmón/metabolismo , Masculino , Metaloproteinasas de la Matriz/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Proteolisis , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , ARN Mensajero/genética , Serina Endopeptidasas/genética , Regulación hacia Arriba
17.
Int J Oncol ; 47(4): 1177-88, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26316068

RESUMEN

The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important pathological functions of uPARAP/Endo180 have been identified in various cancers and in several fibrotic conditions. With a particular focus on matrix turnover in cancer, this review presents the necessary background for understanding the function of uPARAP/Endo180 at the molecular and cellular level, followed by an in-depth survey of the available knowledge of the expression and role of this receptor in various types of cancer and other degenerative diseases.


Asunto(s)
Colágeno/metabolismo , Neoplasias/patología , Receptores Mitogénicos/metabolismo , Animales , Matriz Extracelular/metabolismo , Humanos , Neoplasias/metabolismo
18.
J Cell Biol ; 209(2): 195-8, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25918222

RESUMEN

Matrix degradation is central to tumor pathogenesis. Enzymes that degrade extracellular matrix are abundant in tumors. But which out of the complex mixture of cells that form a tumor produces them? Surprisingly, several hundred studies devoted to this question have provided confusion rather than clarity. Our analysis of these studies identifies likely reasons as to why this may be the case, which has implications for the broader issue of research reproducibility.


Asunto(s)
Matriz Extracelular/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Neoplasias/enzimología , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Humanos , Reproducibilidad de los Resultados
19.
Biochem J ; 461(3): 487-95, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24832573

RESUMEN

Membrane-anchored serine proteases serve as important regulators of multiple developmental and homoeostatic processes in mammals. TMPRSS13 (transmembrane protease, serine 13; also known as mosaic serine protease large-form, MSPL) is a membrane-anchored serine protease with unknown biological functions. In the present study, we used mice with the Tmprss13 gene disrupted by a ß-galactosidase-neomycin fusion gene insertion to study the expression and function of the membrane-anchored serine protease. High levels of Tmprss13 expression were found in the epithelia of the oral cavity, upper digestive tract and skin. Compatible with this expression pattern, Tmprss13-deficient mice displayed abnormal skin development, leading to a compromised barrier function, as measured by the transepidermal fluid loss rate of newborn mice. The present study provides the first biological function for the transmembrane serine protease TMPRSS13.


Asunto(s)
Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Equilibrio Hidroelectrolítico , Animales , Cruzamientos Genéticos , Células Epidérmicas , Epidermis/embriología , Epidermis/patología , Heterocigoto , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Bucal/citología , Mucosa Bucal/embriología , Mucosa Bucal/metabolismo , Mucosa Bucal/patología , Membrana Mucosa/citología , Membrana Mucosa/embriología , Membrana Mucosa/metabolismo , Membrana Mucosa/patología , Proteínas Recombinantes de Fusión/metabolismo , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Serina Proteasas/efectos de los fármacos , Serina Proteasas/genética , Tracto Gastrointestinal Superior/citología , Tracto Gastrointestinal Superior/embriología , Tracto Gastrointestinal Superior/metabolismo , Tracto Gastrointestinal Superior/patología , Vejiga Urinaria/citología , Vejiga Urinaria/embriología , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Desequilibrio Hidroelectrolítico/embriología , Desequilibrio Hidroelectrolítico/genética , Desequilibrio Hidroelectrolítico/metabolismo , Desequilibrio Hidroelectrolítico/patología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
20.
J Biol Chem ; 289(11): 7935-47, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24500714

RESUMEN

Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer invasion, and fibrosis protection. This functional relationship is suggested by a common endocytic capability and a candidate collagen-binding domain. Here we conducted a comparative investigation of each member's ability to facilitate intracellular collagen degradation. As expected, the family members uPARAP/Endo180 and MR bound collagens in a purified system and internalized collagens for degradation in cellular settings. In contrast, the remaining family members, PLA2R and DEC-205, showed no collagen binding activity and were unable to mediate collagen internalization. To pinpoint the structural elements discriminating collagen from non-collagen receptors, we constructed a series of receptor chimeras and loss- and gain-of-function mutants. Using this approach we identified a critical collagen binding loop in the suggested collagen binding region (an FN-II domain) in uPARAP/Endo180 and MR, which was different in PLA2R or DEC-205. However, we also found that an active FN-II domain was not a sufficient determinant to allow collagen internalization through these receptors. Nevertheless, this ability could be acquired by the transfer of a larger segment of uPARAP/Endo180 (the Cys-rich domain, the FN-II domain and two CTLDs) to DEC-205. These data underscore the importance of the FN-II domain in uPARAP/Endo180 and MR-mediated collagen internalization but at the same time uncover a critical interplay with flanking domains.


Asunto(s)
Colágeno/química , Endocitosis , Lectinas Tipo C/química , Lectinas de Unión a Manosa/química , Receptores de Superficie Celular/química , Receptores Mitogénicos/química , Secuencia de Aminoácidos , Animales , Línea Celular , Drosophila , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Insectos , Ligandos , Receptor de Manosa , Glicoproteínas de Membrana/química , Ratones , Datos de Secuencia Molecular , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA