RESUMEN
In the fission yeast Schizosaccharomyces pombe, the response to sulfur depletion has been less studied compared to the response to nitrogen depletion. Our study reveals that the fission yeast gene, SPCC417.09c, plays a significant role in the sulfur depletion response. This gene encodes a protein with a Zn2Cys6 fungal-type DNA-binding domain and a transcription factor domain, and we have named it sdr1+ (sulfur depletion response 1). Interestingly, while sulfur depletion typically induces autophagy akin to nitrogen depletion, we found that autophagy was not induced under sulfur depletion in the absence of sdr1+. This suggests that sdr1+ is necessary for the induction of autophagy under conditions of sulfur depletion. Although sdr1+ is not essential for the growth of fission yeast, its overexpression, driven by the nmt1 promoter, inhibits growth. This implies that Sdr1 may possess cell growth-inhibitory capabilities. In addition, our analysis of Δsdr1 cells revealed that sdr1+ also plays a role in regulating the expression of genes associated with the phosphate depletion response. In conclusion, our study introduces Sdr1 as a novel transcription factor that contributes to an appropriate cellular nutrient starvation response. It does so by inhibiting inappropriate cell growth and inducing autophagy in response to sulfur depletion.
Asunto(s)
Autofagia , Regulación Fúngica de la Expresión Génica , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Azufre , Factores de Transcripción , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Azufre/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras GenéticasRESUMEN
To understand the lifespan of higher organisms, including humans, it is important to understand lifespan at the cellular level as a prerequisite. So, fission yeast is a good model organism for the study of lifespan. To identify the novel factors involved in longevity, we are conducting a large-scale screening of long-lived mutant strains that extend chronological lifespan (cell survival in the stationary phase) using fission yeast. One of the newly acquired long-lived mutant strains (No.98 mutant) was selected for analysis and found that the long-lived phenotype was due to a missense mutation (92Phe â Ile) in the plb1+ gene. plb1+ gene in fission yeast is a nonessential gene encoding a homolog of phospholipase B, but its functions under normal growth conditions, as well as phospholipase B activity, remain unresolved. Our analysis of the No.98 mutant revealed that the plb1 mutation reduces the integrity of the cellular membrane and cell wall and activates Sty1 via phosphorylation.
Asunto(s)
Lisofosfolipasa , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Regulación Fúngica de la Expresión Génica , Longevidad/genética , Lisofosfolipasa/genética , Lisofosfolipasa/metabolismo , Mutación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismoRESUMEN
In Schizosaccharomyces pombe, ecl family genes are induced by several signals, such as starvation of various nutrients, including sulfur, amino acids and Mg2+, and environmental stress, including heat or oxidative stress. These genes mediate appropriate cellular responses and contribute to the maintenance of cell viability and induction of sexual differentiation. Although this yeast has three ecl family genes with overlapping functions, any environmental conditions that induce ecl3+ remain unidentified. We demonstrate that ecl3+ is induced by phosphate starvation, similar to its chromosomally neighboring genes, pho1+ and pho84+, which respectively encode an extracellular acid phosphatase and an inorganic phosphate transporter. ecl3+ expression was induced by the transcription factor Pho7 and affected by the cyclin-dependent kinase (CDK)-activating kinase Csk1. Phosphate starvation induced G1 arrest and sexual differentiation via ecl family genes. Biochemical analyses suggested that this G1 arrest was mediated by the stabilization of the CDK inhibitor Rum1, which was dependent on ecl family genes. This study shows that ecl family genes are required for appropriate responses to phosphate starvation and provides novel insights into the diversity and similarity of starvation responses.
Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fosfatos/metabolismo , Diferenciación Sexual , Factores de Transcripción/metabolismo , Regulación Fúngica de la Expresión GénicaRESUMEN
Fission yeast, Schizosaccharomyces pombe, possesses eight hexose transporters, Ght1~8. In order to clarify the role of each hexose transporter on glucose uptake, a glucose uptake assay system was established and the actual glucose uptake activity of each hexose transporter-deletion mutant was measured. Under normal growth condition containing 2% glucose, ∆ght5 and ∆ght2 mutants showed large and small decrease in glucose uptake activity, respectively. On the other hand, the other deletion mutants did not show any decrease in glucose uptake activity indicating that, in the presence of Ght5 and Ght2, the other hexose transporters do not play a significant role in glucose uptake. To understand the relevance between glucose uptake and lifespan regulation, we measured the chronological lifespan of each hexose transporter deletion mutant, and found that only ∆ght5 mutant showed a significant lifespan extension. Based on these results we showed that Ght5 is mainly involved in the glucose uptake in Schizosaccharomyces pombe, and suggested that the ∆ght5 mutant has prolonged lifespan due to physiological changes similar to calorie restriction.