Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673875

RESUMEN

Photodynamic therapy is expected to be a less invasive treatment, and strategies for targeting mitochondria, the main sources of singlet oxygen, are attracting attention to increase the efficacy of photodynamic therapy and reduce its side effects. To date, we have succeeded in encapsulating the photosensitizer rTPA into MITO-Porter (MP), a mitochondria-targeted Drug Delivery System (DDS), aimed at mitochondrial delivery of the photosensitizer while maintaining its activity. In this study, we report the results of our studies to alleviate rTPA aggregation in an effort to improve drug efficacy and assess the usefulness of modifying the rTPA side chain to improve the mitochondrial retention of MITO-Porter, which exhibits high therapeutic efficacy. Conventional rTPA with anionic side chains and two rTPA analogs with side chains that were converted to neutral or cationic side chains were encapsulated into MITO-Porter. Low-MP (MITO-Porter with Low Drug/Lipid) exhibited high drug efficacy for all three types of rTPA, and in Low-MP, charged rTPA-encapsulated MP exhibited high drug efficacy. The cellular uptake and mitochondrial translocation capacities were similar for all particles, suggesting that differences in aggregation rates during the incorporation of rTPA into MITO-Porter resulted in differences in drug efficacy.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Mitocondrias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Humanos , Fotoquimioterapia/métodos , Porfirinas/química , Porfirinas/farmacología , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química
2.
Nanoscale Adv ; 6(8): 2166-2176, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38633055

RESUMEN

Lipid nanoparticles (LNPs) are essential carrier particles in drug delivery systems, particularly in ribonucleic acid delivery. In preparing lipid-based nanoparticles, microfluidic-based ethanol injection may produce precisely size-controlled nanoparticles. Ethanol is critical in LNP formation and post-treatment processes and affects liposome size, structure, lamellarity, and drug-loading efficiency. However, the effects of time-dependent changes in the ethanol concentration on the structural dynamics of liposomes are not clearly understood. Herein, we investigated ethanol-induced lipid bilayer changes in liposomes on a time scale from microseconds to tens of seconds using a microfluidic-based small-angle X-ray scattering (SAXS) measurement system coupled with molecular dynamics (MD) simulations. The time-resolved SAXS measurement system revealed that single unilamellar liposomes were converted to multilamellar liposomes within 0.8 s of contact with ethanol, and the d-spacing was decreased from 6.1 (w/o ethanol) to 4.4 nm (80% ethanol) with increasing ethanol concentration. We conducted 1 µs MD simulations to understand the molecular-level structural changes in the liposomes. The MD simulations revealed that the changes in the lamellar structure caused by ethanol at the molecular level could explain the structural changes in the liposomes observed via time-resolved SAXS. Therefore, the post-treatment process to remove residual ethanol is critical in liposome formation.

3.
ACS Appl Mater Interfaces ; 16(2): 2110-2119, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38141015

RESUMEN

RNA and DNA delivery technologies using lipid nanoparticles (LNPs) have advanced significantly, as demonstrated by their successful application in mRNA vaccines. To date, commercially available RNA therapeutics include Onpattro, a 21 bp siRNA, and mRNA vaccines comprising 4300 nucleotides for COVID-19. However, a significant challenge remains in achieving efficient transfection, as the size of the delivered RNA and DNA increases. In contrast to RNA transfection, plasmid DNA (pDNA) transfection requires multiple steps, including cellular uptake, endosomal escape, nuclear translocation, transcription, and translation. The low transfection efficiency of large pDNA is a critical limitation in the development of artificial cells and their cellular functionalization. Here, we introduce polymer-lipid hybrid nanoparticles designed for efficient, large-sized pDNA transfection. We demonstrated that LNPs loaded with positively charged pDNA-polycation core nanoparticles exhibited a 4-fold increase in transfection efficiency for 15 kbp pDNA compared with conventional LNPs, which encapsulate a negatively charged pDNA-polycation core. Based on assessments of the size and internal structure of the polymer-lipid nanoparticles as well as hemolysis and cellular uptake analysis, we propose a strategy to enhance large-sized pDNA transfection using LNPs. This approach holds promise for accelerating the in vivo delivery of large-sized pDNA and advancing the development of artificial cells.


Asunto(s)
Liposomas , Nanopartículas , Polielectrolitos , Polímeros , Vacunas de ARNm , Transfección , ADN/química , Plásmidos/genética , Nanopartículas/química , ARN , Lípidos/química
4.
ACS Nano ; 17(19): 18758-18774, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37814788

RESUMEN

RNA vaccines based on lipid nanoparticles (LNPs) with in vitro transcribed mRNA (IVT-mRNA) encapsulated are now a currently successful but still evolving modality of vaccines. One of the advantages of RNA vaccines is their ability to induce CD8+ T-cell-mediated cellular immunity that is indispensable for excluding pathogen-infected cells or cancer cells from the body. In this study, we report on the development of LNPs with an enhanced capability for inducing cellular immunity by using an ionizable lipid with a vitamin E scaffold. An RNA vaccine that contained this ionizable lipid and an IVT-mRNA encoding a model antigen ovalbumin (OVA) induced OVA-specific cytotoxic T cell responses and showed an antitumor effect against an E.G7-OVA tumor model. Vaccination with the LNPs conferred protection against lethal infection by Toxoplasma gondii using its antigen TgPF. The vitamin E scaffold-dependent type I interferon response was important for effector CD8+ T cell differentiation induced by the mRNA-LNPs. Our findings also revealed that conventional dendritic cells (cDCs) were essential for achieving CD8+ T cell responses induced by the mRNA-LNPs, while the XCR1-positive subset of cDCs, cDC1 specialized for antigen cross-presentation, was not required. Consistently, the mRNA-LNPs were found to selectively transfect another subset of cDCs, cDC2 that had migrated from the skin to lymph nodes, where they could make vaccine-antigen-dependent contacts with CD8+ T cells. The findings indicate that the activation of innate immune signaling by the adjuvant activity of the vitamin E scaffold and the expression of antigens in cDC2 are important for subsequent antigen presentation and the establishment of antigen-specific immune responses.


Asunto(s)
Nanopartículas , Linfocitos T Citotóxicos , Animales , Ratones , Linfocitos T CD8-positivos , Vitamina E/farmacología , Vacunas Sintéticas , Vacunas de ARNm , Antígenos , Ovalbúmina , ARN Mensajero/genética , Lípidos/farmacología , Ratones Endogámicos C57BL , Células Dendríticas
6.
J Chromatogr A ; 1706: 464272, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37595418

RESUMEN

Recently, there has been a growing demand for miniaturized analytical instruments, including portable HPLC systems, that can enable rapid analysis in the field. This study aimed to develop chip-based separation/detection modules with replaceable detection units for constructing compact HPLC systems to minimize the dead volume. This module provides a tubing-free connection between the column and the detection unit. This study also built detection units for conductivity detection and ultraviolet-visible (UV-Vis) detection to cover a wide variety of inorganic and organic compounds. Furthermore, UV- and Vis-light-emitting diodes were employed for the absorbance detection unit. In addition, portable all-in-one HPLC systems and a handy HPLC system were constructed for ion chromatography and reversed-phase chromatography, demonstrating the successful separation and detection of inorganic ions and several organic compounds.


Asunto(s)
Cromatografía de Fase Inversa , Cromatografía Liquida , Cromatografía Líquida de Alta Presión , Conductividad Eléctrica
7.
Nat Commun ; 14(1): 4752, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550286

RESUMEN

The lasso peptide MS-271 is a ribosomally synthesized and post-translationally modified peptide (RiPP) consisting of 21 amino acids with D-tryptophan at the C-terminus, and is derived from the precursor peptide MslA. MslH, encoded in the MS-271 biosynthetic gene cluster (msl), catalyzes the epimerization at the Cα center of the MslA C-terminal Trp21, leading to epi-MslA. The detailed catalytic process, including the catalytic site and cofactors, has remained enigmatic. Herein, based on X-ray crystallographic studies in association with MslA core peptide analogues, we show that MslH is a metallo-dependent peptide epimerase with a calcineurin-like fold. The crystal structure analysis, followed by site-directed mutagenesis, docking simulation, and ICP-MS studies demonstrate that MslH employs acid/base chemistry to facilitate the reversible epimerization of the C-terminal Trp21 of MslA, by utilizing two pairs of His/Asp catalytic residues that are electrostatically tethered to a six-coordination motif with a Ca(II) ion via water molecules.


Asunto(s)
Péptidos , Racemasas y Epimerasas , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Dominio Catalítico , Metales/metabolismo
8.
Front Immunol ; 14: 1173728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492571

RESUMEN

Immune checkpoint inhibitors highlight the importance of anticancer immunity. However, their clinical utility and safety are limited by the low response rates and adverse effects. We focused on progesterone (P4), a hormone produced by the placenta during pregnancy, because it has multiple biological activities related to anticancer and immune regulation effects. P4 has a reversible immune regulatory function distinct from that of the stress hormone cortisol, which may drive irreversible immune suppression that promotes T cell exhaustion and apoptosis in patients with cancer. Because the anticancer effect of P4 is induced at higher than physiological concentrations, we aimed to develop a new anticancer drug by encapsulating P4 in liposomes. In this study, we prepared liposome-encapsulated anti-programmed death ligand 1 (PD-L1) antibody-conjugated P4 (Lipo-anti-PD-L1-P4) and evaluated the effects on the growth of MDA-MB-231 cells, a PD-L1-expressing triple-negative breast cancer cell line, in vitro and in NOG-hIL-4-Tg mice transplanted with human peripheral blood mononuclear cells (humanized mice). Lipo-anti-PD-L1-P4 at physiological concentrations reduced T cell exhaustion and proliferation of MDA-MB-231 in vitro. Humanized mice bearing MDA-MB-231 cells expressing PD-L1 showed suppressed tumor growth and peripheral tissue inflammation. The proportion of B cells and CD4+ T cells decreased, whereas the proportion of CD8+ T cells increased in Lipo-anti-PD-L1-P4-administrated mice spleens and tumor-infiltrated lymphocytes. Our results suggested that Lipo-anti-PD-L1-P4 establishes a systemic anticancer immune environment with minimal toxicity. Thus, the use of P4 as an anticancer drug may represent a new strategy for cancer treatment.


Asunto(s)
Liposomas , Neoplasias , Humanos , Animales , Ratones , Progesterona , Leucocitos Mononucleares
9.
J Am Chem Soc ; 145(29): 15838-15847, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37344812

RESUMEN

We report a promising cancer vaccine candidate comprising antigen/adjuvant-displaying enveloped viral replica as a novel vaccine platform. The artificial viral capsid, which consists of a self-assembled ß-annulus peptide conjugated with an HER2-derived antigenic CH401 peptide, was enveloped within a lipid bilayer containing the lipidic adjuvant α-GalCer. The use of an artificial viral capsid as a scaffold enabled precise control of its size to ∼100 nm, which is generally considered to be optimal for delivery to lymph nodes. The encapsulation of the anionically charged capsid by a cationic lipid bilayer dramatically improved its stability and converted its surface charge to cationic, enhancing its uptake by dendritic cells. The developed CH401/α-GalCer-displaying enveloped viral replica exhibited remarkable antibody-production activity. This study represents a pioneering example of precise vaccine design through bottom-up construction and opens new avenues for the development of effective vaccines.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Membrana Dobles de Lípidos , Antígenos , Adyuvantes Inmunológicos , Péptidos
10.
Sci Rep ; 13(1): 6961, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37164988

RESUMEN

Mitochondria, a major source of reactive oxygen species (ROS), are intimately involved in the response to oxidative stress in the body. The production of excessive ROS affects the balance between oxidative responses and antioxidant defense mechanisms thus perturbing mitochondrial function eventually leading to tissue injury. Therefore, antioxidant therapies that target mitochondria can be used to treat such diseases and improve general health. This study reports on an attempt to establish a system for delivering an antioxidant molecule coenzyme Q10 (CoQ10) to mitochondria and the validation of its therapeutic efficacy in a model of acetaminophen (APAP) liver injury caused by oxidative stress in mitochondria. A CoQ10-MITO-Porter, a mitochondrial targeting lipid nanoparticle (LNP) containing encapsulated CoQ10, was prepared using a microfluidic device. It was essential to include polyethylene glycol (PEG) in the lipid composition of this LNP to ensure stability of the CoQ10, since it is relatively insoluble in water. Based on transmission electron microscope (TEM) observations and small angle X-ray scattering (SAXS) measurements, the CoQ10-MITO-Porter was estimated to be a 50 nm spherical particle without a regular layer structure. The use of the CoQ10-MITO-Porter improved liver function and reduced tissue injury, suggesting that it exerted a therapeutic effect on APAP liver injury.


Asunto(s)
Antioxidantes , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetaminofén/farmacología , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Mitocondrias/metabolismo , Ubiquinona/metabolismo , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
11.
Biomater Sci ; 11(7): 2419-2426, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36752548

RESUMEN

The function of liposomal drugs and cosmetics is not only controlled by the lipid composition/formulation, but also by the liposome size and internal structure/properties (uni- and multi-lamellae) and membrane rigid/fluidic properties. Although the preparation of liposomes using microfluidic devices offers precise size control and easy scale-up in a continuous manufacturing system, their lamellarity and physicochemical property differences have not been investigated. We therefore prepared different paclitaxel (PTX)-loaded liposomes by changing two process parameters and investigated their physicochemical properties. The liposome size and drug loading were modified by changing the initial lipid concentration and flow rate ratio (FRR) of the aqueous and ethanol phases introduced into the microfluidic channels. Small-angle X-ray scattering and transmission electron microscopy revealed that the liposomes comprised a uni- or multi-lamellar structure that could be controlled by changing the FRR and initial lipid concentration. We also found that these structural differences affected the drug release profiles. Furthermore, the dissolution kinetics of the latter half of the drug release test could be modulated by the membrane fluidity of the liposomes. These differences in the drug release rates were consistent with the results of the in vitro cell viability assay, confirming that the multilamellar liposomes showed milder activity than the PTX solution by allowing the extended release of PTX. Thus, we concluded that the preparation of liposomes using microfluidic devices allows the liposome size, DL%, and drug release profiles to be adjusted as required.


Asunto(s)
Liposomas , Paclitaxel , Liposomas/química , Liberación de Fármacos , Paclitaxel/farmacología , Lípidos/química , Dispositivos Laboratorio en un Chip , Tamaño de la Partícula
12.
J Biophotonics ; 16(3): e202200119, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36054273

RESUMEN

Photodynamic therapy (PDT) is a cancer therapy that uses a photosensitizer (PS) in the presence of oxygen molecules. Since singlet oxygen is highly reactive, it is important to deliver it to the target site. Thus, an efficient drug delivery system (DDS) is essential for enhancing the efficacy of such a treatment and protecting against the side effects of PDT. Here, we report on attempts to increase the therapeutic effect of PDT by using a DDS, a lipid nanoparticle (LNP). We prepared a porphyrin analog, rTPA (PS) that was encapsulated in LNPs using a microfluidic device. The findings indicated that the internal structure of the prepared particles changed depending on the amount of rTPA in LNPs. The photoactivity and cell-killing effect of PS in LNPs also changed when the amount of the cargo increased. These results suggest that the internal structure of LNPs is important factors that affect drug efficacy.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Oxígeno Singlete
13.
ACS Omega ; 7(37): 33079-33086, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36157756

RESUMEN

The translation of nanoparticles (NPs) from laboratory to clinical settings is limited, which is not ideal. One of the reasons for this is that we currently have limited ability to precisely regulate various physicochemical parameters of nanoparticles. This has made it difficult to rapidly perform targeted screening of drug preparation conditions. In this study, we attempted to broaden the range of preparation conditions for particle size-modulated poly(lactic-co-glycolic-acid) (PLGA) NP to enhance their applicability for drug delivery systems (DDS). This was done using a variety of organic solvents and a glass-based microfluidic device. Furthermore, we compared the PDMS-based microfluidic device to the glass-based microfluidic device in terms of the possibility of a wider range of preparation conditions, especially the effect of different solvents on the size of the PLGA NPs. PLGA NPs with different sizes (sub-200 nm) were successfully prepared, and three different types of taxanes were employed for encapsulation. The drug-loaded NPs showed size-dependent cytotoxicity in cellular assays, regardless of the taxane drug used.

14.
Nanoscale Adv ; 4(2): 532-545, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36132700

RESUMEN

Silver nanoparticles (AgNPs) are practically valuable in biological applications. However, no steady PEGylation has been established, which is essential for internal use in humans or animals. In this study, cyclic PEG (c-PEG) without any chemical inhomogeneity is physisorbed onto AgNPs to successfully PEGylate and drastically enhance the dispersion stability against physiological conditions, white light, and high temperature. In contrast, linear HO-PEG-OH and MeO-PEG-OMe do not confer stability to AgNPs, and HS-PEG-OMe, which is often used for gold nanoparticles, sulfidates the surface to considerably degrade the properties. TEM shows an essentially intact nanostructure of c-PEG-physisorbed AgNPs even after heating at 95 °C, while complete disturbance is observed for other AgNPs. Molecular weight- and concentration-dependent stabilization by c-PEG is investigated, and DLS and ζ-potential measurements prove the formation of a c-PEG layer on the surface of AgNPs. Furthermore, c-PEG-physisorbed AgNPs exhibit persistent antimicrobial activity and cytotoxicity.

15.
PLoS One ; 17(8): e0271050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35925917

RESUMEN

The realization of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) from laboratory to clinical applications remains slow, partly because of the lack of precise control of each condition in the preparation process and the rich selectivity of nanoparticles with diverse characteristics. Employing PLGA NPs to establish a large range of size-controlled drug delivery systems and achieve size-selective drug delivery targeting remains a challenge for therapeutic development for different diseases. In this study, we employed a microfluidic device to control the size of PLGA NPs. PLGA, poly (ethylene glycol)-methyl ether block poly (lactic-co-glycolide) (PEG-PLGA), and blend (PLGA + PEG-PLGA) NPs were engineered with defined sizes. Blend NPs exhibit the widest size range (40-114 nm) by simply changing the flow rate conditions without changing the precursor (polymer molecular weight, concentration, and chain segment composition). A model hydrophobic drug, paclitaxel (PTX), was encapsulated in the NPs, and the PTX-loaded NPs maintained a large range of controllable NP sizes. Furthermore, size-controlled NPs were used to investigate the effect of particle size of sub-200 nm NPs on tumor cell growth. The 52 nm NPs showed higher cell growth inhibition than 109 nm NPs. Our method allows the preparation of biodegradable NPs with a large size range without changing polymer precursors as well as the nondemanding fluid conditions. In addition, our model can be applied to elucidate the role of particle sizes of sub-200 nm particles in various biomedical applications, which may help develop suitable drugs for different diseases.


Asunto(s)
Nanopartículas , Neoplasias , Portadores de Fármacos/química , Humanos , Ácido Láctico/química , Microfluídica , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Paclitaxel/uso terapéutico , Tamaño de la Partícula , Polietilenglicoles/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
16.
J Control Release ; 348: 648-659, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716883

RESUMEN

The use of lipid nanoparticles (LNPs) for nucleic acid delivery is now becoming a promising strategy with a number of clinical trials as vaccines or as novel therapies against a variety of genetic and infectious diseases. The use of microfluidics for the synthesis of the LNPs has attracted interest because of its considerable advantages over other conventional synthetic methods including scalability, reproducibility, and speed. However, despite the potential usefulness of large particles for nucleic acid delivery to dendritic cells (DCs) as a vaccine, the particle size of the LNPs prepared using microfluidics is typically limited to approximately from 30 to 100 nm. In this study, focusing on Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the effect of some synthetic parameters, including total flow rate, flow rate ratio, buffer pH, lipid concentration, molar ratio of PEG-lipid as well as salt concentration, on particle size was systematically examined by means of the design of experiment approaches. The findings indicated that the simple addition of salt (e.g. NaCl) to a buffer containing nucleic acids contributed greatly to the synthesis of large LNPs over 200 nm and this effect was concentration-dependent with respect to the salt. The effect of salt on particle size was consistent with a Hofmeister series. The systemic injection of larger mRNA-loaded LNPs resulted in a higher transgene expression in mouse splenic DCs, a higher activation of various splenic immune cells, and had a superior effect as a therapeutic cancer vaccine in a syngeneic mouse model compared to the smaller-sized counterpart with constant lipid composition prepared with lower NaCl concentration. Collectively, size-regulation by the simple addition of salt is a promising strategy for developing potent LNPs.


Asunto(s)
Dispositivos Laboratorio en un Chip , Nanopartículas , Animales , Lípidos/química , Liposomas , Ratones , Nanopartículas/química , ARN Interferente Pequeño/química , Reproducibilidad de los Resultados , Cloruro de Sodio
17.
Lab Chip ; 22(16): 2971-2977, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35713150

RESUMEN

This paper is the first report of a non-competitive fluorescence polarization immunoassay (NC-FPIA) using a peptide as a tracer. The NC-FPIA can easily and quickly quantify the target after simply mixing them together. This feature is desirable for point-of-need applications such as clinical diagnostics, infectious disease screening, on-site analysis for food safety, etc. In this study, the NC-FPIA was applied to detect CD9, which is one of the exosome markers. We succeeded in detecting not only CD9 but also CD9 expressing exosomes derived from HeLa cells. This method can be applied to various targets if a tracer for the target can be prepared, and expectations are high for its future uses.


Asunto(s)
Péptidos , Polarización de Fluorescencia , Inmunoensayo de Polarización Fluorescente/métodos , Células HeLa , Humanos , Tetraspanina 29
18.
J Vis Exp ; (181)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35404350

RESUMEN

The development of functional lipid nanoparticles (LNPs) is one of the major challenges in the field of drug delivery systems (DDS). Recently, LNP-based RNA delivery systems, namely, RNA-loaded LNPs have attracted attention for RNA therapy. In particular, mRNA-loaded LNP vaccines were approved to prevent COVID-19, thereby leading to the paradigm shift toward the development of next-generation nanomedicines. For the LNP-based nanomedicines, the LNP size is a significant factor in controlling the LNP biodistribution and LNP performance. Therefore, a precise LNP size control technique is indispensable for the LNP production process. Here, we report a protocol for size controlled LNP production using a microfluidic device, named iLiNP. siRNA loaded LNPs are also produced using the iLiNP device and evaluated by in vitro experiment. Representative results are shown for the LNP size, including siRNA-loaded LNPs, Z-potential, siRNA encapsulation efficiency, cytotoxicity, and target gene silencing activity.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Dispositivos Laboratorio en un Chip , Lípidos , Liposomas , ARN Interferente Pequeño/metabolismo , Distribución Tisular
19.
J Control Release ; 344: 80-96, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35183654

RESUMEN

In 2021, mRNA vaccines against COVID-19 were approved by the Food and Drug Administration. mRNA vaccines are important for preventing severe COVID-19 and returning to normal life. The development of RNA-delivery technology, including mRNA vaccines, has been investigated worldwide for ~30 years. Lipid nanoparticles (LNPs) are a breakthrough technology that stably delivers RNA to target organs, and RNA-loaded LNP-based nanomedicines have been studied for the development of vaccines and nanomedicines for RNA-, gene-, and cell-based therapies. Recently, microfluidic devices and technologies have attracted attention for the production of LNPs, particularly RNA-loaded LNPs. Microfluidics provides many advantages for RNA-loaded LNP production, including precise LNP size controllability, high reproducibility, high-throughput optimization of LNP formulation, and continuous LNP-production processes. In this review, we summarize microfluidic-based RNA-loaded LNP production and its applications in RNA-based therapy and genome editing.


Asunto(s)
COVID-19 , Nanopartículas , Vacunas contra la COVID-19 , Humanos , Lípidos , Liposomas , Microfluídica , ARN Interferente Pequeño/genética , Reproducibilidad de los Resultados
20.
Biosens Bioelectron ; 198: 113832, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34856516

RESUMEN

This study aimed to develop an electrochemical system for measuring blood ATP and lactate levels in a single format. The ratio of lactate to ATP levels was previously reported to provide an alternative illness severity score. Although severity evaluation is crucial to treat patients with acute disease admitted to intensive care units, no sensors are currently available to simply and rapidly measure ATP and lactate levels using the same detection method. Therefore, we constructed an integrated sensing system for ATP and lactate using enzymatic reactions and two sets of electrodes integrated into a chip connected to a single potentiostat operated by a microcontroller. The enzymatic system involves adenylate kinase, pyruvate kinase, and pyruvate oxidase for ATP, and lactate oxidase for lactate, both of which produce hydrogen peroxide. Multiplex enzyme-based reactions were designed to minimize the corresponding operations significantly without enzyme immobilization onto the electrodes. The system was robust in the presence of potentially interfering blood components, such as ascorbate, pyruvate, ADP, urate, and potassium ions. The ATP and lactate levels in the blood were successfully measured using the new sensor with good recoveries. The analytical results of blood samples obtained using our sensor were in good agreement with those using conventional methods. Integrating electrode-based analysis and a microcontroller-based system saved further operations, enabling the straightforward measurement of ATP and lactate levels within 5 min. The proposed sensor may serve as a useful tool in the management of serious infectious diseases.


Asunto(s)
Técnicas Biosensibles , Ácido Láctico , Adenosina Trifosfato , Electrodos , Humanos , Gravedad del Paciente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...