RESUMEN
Klebsiella pneumoniae of sequence type (ST) 11 is a hyper-epidemic nosocomial clone, which is spreading worldwide among humans and emerging in pets. This is the first report, to the best of our knowledge, of multidrug-resistant (MDR) K. pneumoniae ST11 carrying blaSCO-1 and blaDHA-1, isolated from a four-month-old dog in Belgium. Antimicrobial susceptibility testing (AST) of the isolate, performed via broth microdilution following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines, revealed resistance to eight different classes of antimicrobials, including carbapenems, in particular ertapenem, third-generation cephalosporins and fluoroquinolones. A hybrid approach, combining long- and short-read sequencing, was employed for in silico plasmid characterization, multi-locus sequence typing (MLST) and the identification and localization of antimicrobial resistance (AMR) and virulence-associated genes. Three plasmids were reconstructed from the whole-genome sequence (WGS) data: the conjugative IncFIB(K), the non-mobilizable IncR and the mobilizable but unconjugative ColRNAI. The IncFIB(K) plasmid carried the blaSCO-1 gene, whereas IncR carried blaDHA-1, both alongside several other antimicrobial resistance genes (ARGs). No virulence genes could be detected. Here, we suggest that the resistance to ertapenem associated with susceptibility to imipenem and meropenem in K. pneumoniae could be related to the presence of blaSCO-1 and blaDHA-1, combined with permeability defects caused by point mutations in an outer membrane porin (OmpK37). The presence of the blaSCO-1 gene on a conjugative IncFIB(K) plasmid is worrisome as it can increase the risk of transmission to humans, to animals and to the environment.
RESUMEN
OBJECTIVES: Shigella sonnei resistant to first-line antibiotics azithromycin and ciprofloxacin are on the rise globally. The aim of this study was to describe the epidemiology of MDR S. sonnei in Belgium and to identify origins and circulating clusters through WGS. METHODS: We undertook demographic, temporal and geographical analysis of 930 S. sonnei isolates submitted to the Belgian National Reference Centre for Salmonella and Shigella between 2017 and 2019. Phylogenetic analysis of WGS data, genotyping and identification of genetic markers of antimicrobial resistance was performed on 372 Belgian isolates submitted between 2013 and 2019. RESULTS: S. sonnei was identified in 75% (930/1253) of Belgian Shigella isolates submitted between 2017 and 2019. Overall, 7% (69/930) of isolates were resistant to ciprofloxacin alone, 6% (57/930) showed reduced susceptibility to azithromycin alone, and 24% (223/930) exhibited both. Men were at higher risk of carrying a double resistant S. sonnei strain, compared with women (risk ratio = 8.6, 95% CI = 5.4-13.9). Phylogenetic analysis revealed four independent Belgian clusters of persistently circulating MDR strains, associated with men who have sex with men (MSM) and of the same genotypes as previously described international MSM-related clades. Belgian isolates carried various incompatibility (Inc)-type plasmids, the SpA plasmid and ESBL genes. CONCLUSIONS: In Belgium, S. sonnei isolates from men are much more likely to be resistant to important first-line antibiotics than isolates from women. Multiple co-circulating MDR S. sonnei clusters of different genotypes were identified in the MSM community. Further studies on risk groups are needed for targeted prevention, improved clinical and public health management and antimicrobial stewardship in Belgium.
Asunto(s)
Disentería Bacilar , Minorías Sexuales y de Género , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bélgica/epidemiología , Farmacorresistencia Bacteriana/genética , Disentería Bacilar/tratamiento farmacológico , Disentería Bacilar/epidemiología , Femenino , Genómica , Homosexualidad Masculina , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Filogenia , Shigella sonneiRESUMEN
Chemical signaling in animals often plays a central role in eliciting a variety of responses during reproductive interactions between males and females. One of the best-known vertebrate courtship pheromone systems is sodefrin precursor-like factors (SPFs), a family of two-domain three-finger proteins with a female-receptivity enhancing function, currently only known from salamanders. The oldest divergence between active components in a single salamander species dates back to the Late Paleozoic, indicating that these proteins potentially gained a pheromone function earlier in amphibian evolution. Here, we combined whole transcriptome sequencing, proteomics, histology, and molecular phylogenetics in a comparative approach to investigate SPF occurrence in male breeding glands across the evolutionary tree of anurans (frogs and toads). Our study shows that multiple families of both terrestrially and aquatically reproducing frogs have substantially increased expression levels of SPFs in male breeding glands. This suggests that multiple anuran lineages make use of SPFs to complement acoustic and visual sexual signaling during courtship. Comparative analyses show that anurans independently recruited these proteins each time the gland location on the male's body allowed efficient transmission of the secretion to the female's nares.
Asunto(s)
Anuros/metabolismo , Atractivos Sexuales/metabolismo , Animales , Anuros/genética , Glándulas Exocrinas/metabolismo , Femenino , Masculino , Oligopéptidos/metabolismo , Filogenia , Caracteres Sexuales , Secuenciación del ExomaRESUMEN
Animal sex pheromone systems often exist as multicomponent signals [1-11] to which chemical cues have been added over evolutionary time. Little is known on why and how additional molecules become recruited and conserved in an already functional pheromone system. Here, we investigated the evolutionary trajectory of a series of 15 kDa proteins-termed persuasins-that were co-opted more recently alongside the ancient sodefrin precursor-like factor (SPF) courtship pheromone system in salamanders [9, 12]. Expression, genomic, and molecular phylogenetic analyses show that persuasins originated from a gene that is expressed as a multi-domain protein in internal organs where it has no pheromone function but underwent gene duplication and neofunctionalization. The subsequent evolution combined domain loss and the introduction of a proteolytic cleavage site in the duplicated gene to give rise to two-domain cysteine rich proteins with structural properties similar to SPF pheromones [12]. An expression shift to the pheromone-producing glands, where expression of persuasins was immediately spatiotemporally synchronized with the already available pheromone system, completed the birth of a new pheromone. Electrostatic forces between members of both protein families likely enhance co-localization and simultaneous activation of different female olfactory neurons, explaining why persuasins immediately had a selective advantage. In line with this, behavioral assays show that persuasins increase female receptivity on their own but also exert a cumulative or synergistic effect in combination with SPF, clearly reinforcing the pheromone system as a whole. Our study reveals molecular remodeling of an existing protein architecture as an evolutionary mechanism for functional reinforcement of animal pheromone systems.
Asunto(s)
Adaptación Biológica , Proteínas Anfibias/genética , Atractivos Sexuales/fisiología , Urodelos/fisiología , Secuencia de Aminoácidos , Proteínas Anfibias/química , Proteínas Anfibias/metabolismo , Animales , Evolución Molecular , Femenino , Masculino , Filogenia , Alineación de Secuencia , Atractivos Sexuales/química , Atractivos Sexuales/genética , Especificidad de la Especie , Urodelos/genéticaRESUMEN
In animals that use chemical communication during courtship and reproduction, speciation is often associated with divergence of their sex pheromones. In multicomponent pheromone systems, divergence can be obtained either by adding or deleting components, or by altering the relative contribution of individual components to the mixture. Protein pheromone systems can additionally evolve by amino acid sequence divergence to produce pheromones with a species-specific effect. The sodefrin precursor-like factor (SPF) pheromone system, a blend of proteins that essentially enhances receptivity in salamanders, has had a long and dynamic evolution of gene duplications, but the mechanisms that govern interspecific divergence and the role they play in reproductive isolation remain elusive. Here, we use transcriptomics and proteomics to characterize the SPF protein repertoire of the alpine newt (Ichthyosaura alpestris), and compare it to the previously identified repertoire of SPF proteins of the palmate newt (Lissotriton helveticus), a related but nonhybridizing species. Subsequent phylogenetic analyses indicate that, despite the availability of multiple SPF gene copies, both species predominantly express the same subset of orthologs. Our study demonstrates that species specificity in the SPF protein pheromone system can be established by gradual sequence divergence of the same set of proteins alone.
Asunto(s)
Variación Genética/genética , Filogenia , Salamandridae/genética , Atractivos Sexuales/genética , Animales , Evolución Molecular , Femenino , Masculino , Proteínas/genética , Salamandridae/fisiología , Conducta Sexual Animal , Especificidad de la EspecieRESUMEN
Sodefrin, a decapeptide isolated from the male dorsal gland of the Japanese fire belly newt Cynops pyrrhogaster, was the first peptide pheromone identified from a vertebrate. The fire belly salamander and sodefrin have become a model for sex pheromone investigation in aquatically courting salamanders ever since. Subsequent studies in other salamanders identified SPF protein courtship pheromones of around 20 kDa belonging to the same gene-family. Although transcripts of these proteins could be PCR-amplified in Cynops, it is currently unknown whether they effectively use full-length SPF pheromones next to sodefrin. Here we combined transcriptomics, proteomics and phylogenetics to investigate SPF pheromone use in Cynops pyrrhogaster. Our data show that not sodefrin transcripts, but multiple SPF transcripts make up the majority of the expression profile in the dorsal gland of this newt. Proteome analyses of water in which a male has been courting confirm that this protein blend is effectively secreted and tail-fanned to the female. By combining phylogenetics and expression data, we show that independent evolutionary lineages of these SPF's were already expressed in ancestral Cynops species before the origin of sodefrin. Extant Cynops species continue to use this multi-component pheromone system, consisting of various proteins in addition to a lineage-specific peptide.
Asunto(s)
Oligopéptidos/metabolismo , Feromonas/metabolismo , Salamandridae/metabolismo , Animales , Femenino , Masculino , Especificidad de la EspecieRESUMEN
Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution.
Asunto(s)
Ambystoma mexicanum/metabolismo , Feromonas/metabolismo , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Cloaca/metabolismo , Cortejo , Femenino , Perfilación de la Expresión Génica , Masculino , Espectrometría de Masas , Modelos Animales , Datos de Secuencia Molecular , Feromonas/análisis , Feromonas/clasificación , Filogenia , Proteómica , Alineación de Secuencia , Conducta Sexual AnimalRESUMEN
Males of the advanced salamanders (Salamandroidea) attain internal fertilization without a copulatory organ by depositing a spermatophore on the substrate in the environment, which females subsequently take up with their cloaca. The aquatically reproducing modern Eurasian newts (Salamandridae) have taken this to extremes, because most species do not display close physical contact during courtship, but instead largely rely on females following the male track at spermatophore deposition. Although pheromones have been widely assumed to represent an important aspect of male courtship, molecules able to induce the female following behaviour that is the prelude for successful insemination have not yet been identified. Here, we show that uncleaved sodefrin precursor-like factor (SPF) protein pheromones are sufficient to elicit such behaviour in female palmate newts (Lissotriton helveticus). Combined transcriptomic and proteomic evidence shows that males simultaneously tail-fan multiple ca 20 kDa glycosylated SPF proteins during courtship. Notably, molecular dating estimates show that the diversification of these proteins already started in the late Palaeozoic, about 300 million years ago. Our study thus not only extends the use of uncleaved SPF proteins outside terrestrially reproducing plethodontid salamanders, but also reveals one of the oldest vertebrate pheromone systems.
Asunto(s)
Proteínas Anfibias/metabolismo , Atractivos Sexuales/metabolismo , Urodelos/fisiología , Secuencia de Aminoácidos , Proteínas Anfibias/genética , Animales , Secuencia de Bases , Cortejo , Femenino , Masculino , Datos de Secuencia Molecular , Filogenia , Proteoma , Atractivos Sexuales/genética , Conducta Sexual Animal , Especificidad de la Especie , Transcriptoma , Urodelos/genéticaRESUMEN
Sex pheromones form an important facet of reproductive strategies in many organisms throughout the Animal Kingdom. One of the oldest known sex pheromones in vertebrates are proteins of the Sodefrin Precursor-like Factor (SPF) system, which already had a courtship function in early salamanders. The subsequent evolution of salamanders is characterized by a diversification in courtship and reproduction, but little is known on how the SPF pheromone system diversified in relation to changing courtship strategies. Here, we combined transcriptomic, genomic, and phylogenetic analyses to investigate the evolution of the SPF pheromone system in nine salamandrid species with distinct courtship displays. First, we show that SPF originated from vertebrate three-finger proteins and diversified through multiple gene duplications in salamanders, while remaining a single copy in frogs. Next, we demonstrate that tail-fanning newts have retained a high phylogenetic diversity of SPFs, whereas loss of tail-fanning has been associated with a reduced importance or loss of SPF expression in the cloacal region. Finally, we show that the attractant decapeptide sodefrin is cleaved from larger SPF precursors that originated by a 62 bp insertion and consequent frameshift in an ancestral Cynops lineage. This led to the birth of a new decapeptide that rapidly evolved a pheromone function independently from uncleaved proteins.
Asunto(s)
Atractivos Sexuales/genética , Urodelos/genética , Urodelos/metabolismo , Animales , Evolución Molecular , Atractivos Sexuales/clasificaciónRESUMEN
Amphibians have invaded arboreal habitats multiple times independently during their evolution. Adaptation to these habitats was nearly always accompanied by the presence or appearance of toe pads, flattened enlargements on tips of fingers and toes that provide adhesive power in these environments. The strength and elasticity of the toe pad relies on polygonal arrayed cells ending in nanoscale projections, which are densely packed with cytoskeletal proteins. Here, we characterized and determined the evolutionary origin of these proteins in the toe pad of the tree frog Hyla cinerea. We created a subtracted cDNA library enriching genes that are expressed in the toe pad, but nowhere else in the toe. Our analyses revealed five alpha keratins as main structural proteins of the amphibian toe pad. Phylogenetic analyses show that these proteins belong to different keratin lineages that originated in an early tetrapod ancestor and in mammals evolved to become the major keratin types of hair. The ancestral keratins were probably already expressed in areas that required skin reinforcement in early tetrapods, and subsequently diverged to support fundamentally different adaptive structures in amphibians and mammals.