Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 8(89): eadd4374, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37922341

RESUMEN

The salivary glands often become damaged in individuals receiving radiotherapy for head and neck cancer, resulting in chronic dry mouth. This leads to detrimental effects on their health and quality of life, for which there is no regenerative therapy. Macrophages are the predominant immune cell in the salivary glands and are attractive therapeutic targets due to their unrivaled capacity to drive tissue repair. Yet, the nature and role of macrophages in salivary gland homeostasis and how they may contribute to tissue repair after injury are not well understood. Here, we show that at least two phenotypically and transcriptionally distinct CX3CR1+ macrophage populations are present in the adult salivary gland, which occupy anatomically distinct niches. CD11c+CD206-CD163- macrophages typically associate with gland epithelium, whereas CD11c-CD206+CD163+ macrophages associate with blood vessels and nerves. Using a suite of complementary fate mapping systems, we show that there are highly dynamic changes in the ontogeny and composition of salivary gland macrophages with age. Using an in vivo model of radiation-induced salivary gland injury combined with genetic or antibody-mediated depletion of macrophages, we demonstrate an essential role for macrophages in clearance of cells with DNA damage. Furthermore, we show that epithelial-associated macrophages are indispensable for effective tissue repair and gland function after radiation-induced injury, with their depletion resulting in reduced saliva production. Our data, therefore, provide a strong case for exploring the therapeutic potential of manipulating macrophages to promote tissue repair and thus minimize salivary gland dysfunction after radiotherapy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Xerostomía , Humanos , Macrófagos , Calidad de Vida , Glándulas Salivales , Xerostomía/terapia
2.
Mucosal Immunol ; 16(5): 658-670, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37453568

RESUMEN

Group 3 innate lymphoid cells (ILC3) are potent effector cells with critical roles in enforcing immunity, barrier integrity and tissue homeostasis along the gastrointestinal tract. ILC3 are considered primarily tissue-resident cells, seeding the gastrointestinal tract during embryonic stages and early life. However, the mechanisms through which mature ILC3 are maintained within adult tissues are poorly understood. Here, we report that lymphoid tissue-inducer-like (LTi-like) ILC3 exhibit minimal turnover in the healthy adult intestinal tract, persist for extended periods of time, and display a quiescent phenotype. Strikingly, during enteric bacterial infection LTi-like ILC3 also exhibit negligible hematopoietic replenishment and remain non-proliferative, despite robustly producing cytokines. Survival of LTi-like ILC3 was found to be dependent upon the balance between the metabolic activity required to drive effector function and anti-apoptotic programs. Notably, the pro-survival protein B-cell lymphoma-2 (Bcl-2) was required for the survival of LTi-like ILC3 ex vivo but was rendered partially dispensable if mitochondrial respiration was inhibited. Together we demonstrate LTi-like ILC3 are a tissue-resident, quiescent population that persist independently of hematopoietic replenishment to survive within the intestinal microenvironment.


Asunto(s)
Inmunidad Innata , Linfocitos , Tejido Linfoide/metabolismo , Citocinas/metabolismo , Fenotipo
3.
Int Rev Cell Mol Biol ; 368: 213-259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35636928

RESUMEN

Macrophages are central elements of all organs, where they have a multitude of physiological and pathological functions. The first macrophages are produced during fetal development, and most adult organs retain populations of fetal-derived macrophages that self-maintain without major input of hematopoietic stem cell-derived monocytes. Their developmental origins make macrophages highly susceptible to environmental perturbations experienced in early life, in particular the fetal period. It is now well recognized that such adverse developmental conditions contribute to a wide range of diseases later in life. This chapter explores the notion that macrophages are key targets of environmental adversities during development, and mediators of their long-term impact on health and disease. We first briefly summarize our current understanding of macrophage ontogeny and their biology in tissues and consider potential mechanisms by which environmental stressors may mediate fetal programming. We then review evidence for programming of macrophages by adversities ranging from maternal immune activation and diet to environmental pollutants and toxins, which have disease relevance for different organ systems. Throughout this chapter, we contemplate appropriate experimental strategies to study macrophage programming. We conclude by discussing how our current knowledge of macrophage programming could be conceptualized, and finally highlight open questions in the field and approaches to address them.


Asunto(s)
Experiencias Adversas de la Infancia , Macrófagos , Células Madre Hematopoyéticas , Humanos , Animales
4.
Eur Heart J ; 40(30): 2507-2520, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31162546

RESUMEN

AIMS: A better understanding of the pathways that regulate regeneration of the coronary vasculature is of fundamental importance for the advancement of strategies to treat patients with heart disease. Here, we aimed to investigate the origin and clonal dynamics of endothelial cells (ECs) associated with neovascularization in the adult mouse heart following myocardial infarction (MI). Furthermore, we sought to define murine cardiac endothelial heterogeneity and to characterize the transcriptional profiles of pro-angiogenic resident ECs in the adult mouse heart, at single-cell resolution. METHODS AND RESULTS: An EC-specific multispectral lineage-tracing mouse (Pdgfb-iCreERT2-R26R-Brainbow2.1) was used to demonstrate that structural integrity of adult cardiac endothelium following MI was maintained through clonal proliferation by resident ECs in the infarct border region, without significant contributions from bone marrow cells or endothelial-to-mesenchymal transition. Ten transcriptionally discrete heterogeneous EC states, as well as the pathways through which each endothelial state is likely to enhance neovasculogenesis and tissue regeneration following ischaemic injury were defined. Plasmalemma vesicle-associated protein (Plvap) was selected for further study, which showed an endothelial-specific and increased expression in both the ischaemic mouse and human heart, and played a direct role in regulating human endothelial proliferation in vitro. CONCLUSION: We present a single-cell gene expression atlas of cardiac specific resident ECs, and the transcriptional hierarchy underpinning endogenous vascular repair following MI. These data provide a rich resource that could assist in the development of new therapeutic interventions to augment endogenous myocardial perfusion and enhance regeneration in the injured heart.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Infarto del Miocardio/metabolismo , Neovascularización Fisiológica/genética , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Animales , Proliferación Celular/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Transgénicos , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología
5.
Nat Commun ; 7: 12651, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27582256

RESUMEN

Fat-associated lymphoid clusters (FALC) are inducible structures that support rapid innate-like B-cell immune responses in the serous cavities. Little is known about the physiological cues that activate FALCs in the pleural cavity and more generally the mechanisms controlling B-cell activation in FALCs. Here we show, using separate models of pleural nematode infection with Litomosoides sigmodontis and Altenaria alternata induced acute lung inflammation, that inflammation of the pleural cavity rapidly activates mediastinal and pericardial FALCs. IL-33 produced by FALC stroma is crucial for pleural B1-cell activation and local IgM secretion. However, B1 cells are not the direct target of IL-33, which instead requires IL-5 for activation. Moreover, lung inflammation leads to increased IL-5 production by type 2 cytokine-producing innate lymphoid cells (ILC2) in the FALC. These findings reveal a link between inflammation, IL-33 release by FALC stromal cells, ILC2 activation and pleural B-cell activation in FALCs, resulting in local and antigen-specific IgM production.


Asunto(s)
Alternaria/inmunología , Filarioidea/inmunología , Inmunoglobulina M/inmunología , Interleucina-33/inmunología , Tejido Linfoide/inmunología , Neumonía/inmunología , Alternariosis/inmunología , Alternariosis/parasitología , Animales , Linfocitos B/inmunología , Células Cultivadas , Femenino , Filariasis/inmunología , Filariasis/parasitología , Inmunidad Innata/inmunología , Interleucina-5/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...