Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860326

RESUMEN

Recently, giant coercivities (20-42 kOe) and sub-terahertz natural ferromagnetic resonance (NFMR) at 100-300 GHz were observed for single-domain M-type hexaferrite particles with high aluminum substitution. Herein, we fabricated dense ceramics of Sr0.67Ca0.33Fe8Al4O19 and, for the first time, investigated their magnetostatic and magnetodynamic properties in the temperature range of 5-300 K. It was shown that dense ceramics maintain their high magnetic hardness (a coercivity of 10-20 kOe) and NFMR frequencies of 140-200 GHz durably in the entire temperature range. Magnetizing the initially non-magnetized ceramics leads to a considerable decrease in the resonance absorption and to almost complete vanishing of the resonance line at 5 kOe. At the same time, an efficient linear frequency tuning by the external magnetic field was observed for the remanent sample. These findings open new horizons for developing industrial terahertz electronics based on dielectric ferrimagnets.

2.
Int J Pharm ; 644: 123291, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37544388

RESUMEN

This study focuses on the use of methacrylic acid polymers synthesised via the Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation method for the production of amorphous solid dispersions (ASDs) by ball milling, to kinetically solubilize a poorly water-soluble model drug. The solid-state characteristics and the physical stability of the formulations were investigated using X-ray diffraction, differential scanning calorimetry, and infrared spectroscopy. This was followed by dissolution studies in different media. It was discovered that the acidic polymers of methacrylic acid were capable of interacting with the weakly basic drug lidocaine and its hydrochloride salt form to produce ASDs when a polymer to drug ratio of 70:30 w/w was used. The ASDs remained amorphous following storage under accelerated aging conditions (40 °C and 75% relative humidity) over 8 months. Fast dissolution and increased lidocaine solubility in different media were obtained from the ASDs owing to the reduced microenvironment pH and enhanced solubilization of the drug caused by the presence of the acidic polymer in the formulation. Production of ASDs using well-defined RAFT-synthesised acidic polymers is a promising formulation strategy to enhance the pharmaceutical properties of basic poorly water-soluble drugs.


Asunto(s)
Lidocaína , Ácidos Polimetacrílicos , Polímeros/química , Solubilidad , Agua/química , Composición de Medicamentos/métodos
3.
Int J Pharm X ; 6: 100200, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37564112

RESUMEN

The combination of poorly-soluble drugs with small molecule co-formers to generate amorphous solid dispersions (ASDs) has great potential to improve dissolution rate and kinetic solubility, and thus increase the bioavailability of these active ingredients. However, such ASDs are known to be unstable and to crystallise upon storage or heating. In this work, we explore the crystallisation of flufenamic acid (FFA) from ASDs prepared with trehalose. FFA-trehalose mixtures were prepared at a range of w/w composition ratios, heated to melting and crash cooled to form ASDs. They were then subject to a further heat/cool cycle, which was monitored by simultaneous differential scanning calorimetry - X-ray diffraction to observe the phase changes occurring. These varied with the composition of the blend. Upon short-term storage, formulations with low trehalose contents (FFA:trehalose 5:1 w/w) recrystallised into form I FFA, while higher trehalose contents crystallised to FFA form IV. When heated, all FFA trehalose combinations ultimately recrystallised into form I before melting. Upon a second cooling cycle, systems with low trehalose content (FFA:trehalose 5:1 w/w) recrystallised into form IV, while higher trehalose contents led to FFA form I. It is thus clear that even with a single excipient it is possible to control the crystallisation pathway through judicious choice of the formulation parameters.

4.
Angew Chem Int Ed Engl ; 62(14): e202218094, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36744674

RESUMEN

Metal coordination compound (MCC) glasses [e.g., metal-organic framework (MOF) glass, coordination polymer glass, and metal inorganic-organic complex (MIOC) glass] are emerging members of the hybrid glass family. So far, a limited number of crystalline MCCs can be converted into glasses by melt-quenching. Here, we report a universal wet-chemistry method, by which the super-sized supramolecular MIOC glasses can be synthesized from non-meltable MOFs. Alcohol and acid were used as agents to inhibit crystallization. The MIOC glasses demonstrate unique features including high transparency, shaping capability, and anisotropic network. Directional photoluminescence with a large polarization ratio (≈47 %) was observed from samples doped with organic dyes. This crystallization-suppressing approach enables fabrication of super-sized MCC glasses, which cannot be achieved by conventional vitrification methods, and thus allows for exploring new MCC glasses possessing photonic functionalities.

5.
Angew Chem Int Ed Engl ; 62(19): e202212688, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36617841

RESUMEN

Crystal engineering has exclusively focused on the development of advanced materials based on small organic molecules. We now demonstrate how the cocrystallization of a polymer yields a material with significantly enhanced thermal stability but equivalent mechanical flexibility. Isomorphous replacement of one of the cocrystal components enables the formation of solid solutions with melting points that can be readily fine-tuned over a usefully wide temperature range. The results of this study credibly extend the scope of crystal engineering and cocrystallization from small molecules to polymers.

6.
Nat Commun ; 13(1): 6169, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36257960

RESUMEN

Catastrophic failure in brittle, porous materials initiates when smaller-scale fractures localise along an emergent fault zone in a transition from stable crack growth to dynamic rupture. Due to the rapid nature of this critical transition, the precise micro-mechanisms involved are poorly understood and difficult to image directly. Here, we observe these micro-mechanisms directly by controlling the microcracking rate to slow down the transition in a unique rock deformation experiment that combines acoustic monitoring (sound) with contemporaneous in-situ x-ray imaging (vision) of the microstructure. We find seismic amplitude is not always correlated with local imaged strain; large local strain often occurs with small acoustic emissions, and vice versa. Local strain is predominantly aseismic, explained in part by grain/crack rotation along an emergent shear zone, and the shear fracture energy calculated from local dilation and shear strain on the fault is half of that inferred from the bulk deformation.

7.
J Synchrotron Radiat ; 29(Pt 4): 1043-1053, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787572

RESUMEN

Three-dimensional X-ray diffraction (3DXRD) is shown to be feasible at the I12 Joint Engineering, Environmental and Processing (JEEP) beamline of Diamond Light Source. As a demonstration, a microstructually simple low-carbon ferritic steel was studied in a highly textured and annealed state. A processing pipeline suited to this beamline was created, using software already established in the 3DXRD user community, enabling grain centre-of-mass positions, orientations and strain tensor elements to be determined. Orientations, with texture measurements independently validated from electron backscatter diffraction (EBSD) data, possessed a ∼0.1° uncertainty, comparable with other 3DXRD instruments. The spatial resolution was limited by the far-field detector pixel size; the average of the grain centre of mass position errors was determined as ±âˆ¼80 µm. An average per-grain error of ∼1 × 10-3 for the elastic strains was also measured; this could be reduced in future experiments by improving sample preparation, geometry calibration, data collection and analysis techniques. Application of 3DXRD onto I12 shows great potential, where its implementation is highly desirable due to the flexible, open architecture of the beamline. User-owned or designed sample environments can be used, thus 3DXRD could be applied to previously unexplored scientific areas.

8.
ACS Appl Mater Interfaces ; 14(27): 31396-31410, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35759353

RESUMEN

To explore an effective route of customizing the superelasticity (SE) of NiTi shape memory alloys via modifying the grain structure, binary Ni55Ti45 (wt) alloys were fabricated in as-cast, hot swaged, and hot-rolled conditions, presenting contrasting grain sizes and grain boundary types. In situ synchrotron X-ray Laue microdiffraction and in situ synchrotron X-ray powder diffraction techniques were employed to unravel the underlying grain structure mechanisms that cause the diversity of SE performance among the three materials. The evolution of lattice rotation, strain field, and phase transformation has been revealed at the micro- and mesoscale, and the effect of grain structure on SE performance has been quantified. It was found that (i) the Ni4Ti3 and NiTi2 precipitates are similar among the three materials in terms of morphology, size, and orientation distribution; (ii) phase transformation happens preferentially near high-angle grain boundary (HAGB) yet randomly in low-angle grain boundary (LAGB) structures; (iii) the smaller the grain size, the higher the phase transformation nucleation kinetics, and the lower the propagation kinetics; (iv) stress concentration happens near HAGBs, while no obvious stress concentration can be observed in the LAGB grain structure during loading; (v) the statistical distribution of strain in the three materials becomes asymmetric during loading; (vi) three grain lattice rotation modes are identified and termed for the first time, namely, multi-extension rotation, rigid rotation, and nondispersive rotation; and (vii) the texture evolution of B2 austenite and B19' martensite is not strongly dependent on the grain structure.

9.
Mater Horiz ; 9(7): 2007, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35638443

RESUMEN

Correction for 'High-coercivity hexaferrite ceramics featuring sub-terahertz ferromagnetic resonance' by Evgeny A. Gorbachev et al., Mater. Horiz., 2022, 9, 1264-1272, DOI: https://doi.org/10.1039/D1MH01797G.

10.
Adv Sci (Weinh) ; 9(16): e2105723, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35404540

RESUMEN

The performance of Li+ ion batteries (LIBs) is hindered by steep Li+ ion concentration gradients in the electrodes. Although thick electrodes (≥300 µm) have the potential for reducing the proportion of inactive components inside LIBs and increasing battery energy density, the Li+ ion concentration gradient problem is exacerbated. Most understanding of Li+ ion diffusion in the electrodes is based on computational modeling because of the low atomic number (Z) of Li. There are few experimental methods to visualize Li+ ion concentration distribution of the electrode within a battery of typical configurations, for example, coin cells with stainless steel casing. Here, for the first time, an interrupted in situ correlative imaging technique is developed, combining novel, full-field X-ray Compton scattering imaging with X-ray computed tomography that allows 3D pixel-by-pixel mapping of both Li+ stoichiometry and electrode microstructure of a LiNi0.8 Mn0.1 Co0.1 O2 cathode to correlate the chemical and physical properties of the electrode inside a working coin cell battery. An electrode microstructure containing vertically oriented pore arrays and a density gradient is fabricated. It is shown how the designed electrode microstructure improves Li+ ion diffusivity, homogenizes Li+ ion concentration through the ultra-thick electrode (1 mm), and improves utilization of electrode active materials.

11.
Mol Pharm ; 19(5): 1477-1487, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35347993

RESUMEN

Flufenamic acid (FFA) is a highly polymorphic drug molecule with nine crystal structures reported in the Cambridge Structural Database. This study explores the use of synchrotron X-ray powder diffraction combined with differential scanning calorimetry to study crystallization and polymorphic phase transitions upon heating FFA-polymer amorphous solid dispersions (ASDs). Ethyl cellulose (EC, 4 cp) and hydroxypropylmethylcellulose (HPMC) grades with different viscosities and substitution patterns were used to prepare dispersions with FFA at 5:1, 2:1, 1:1, and 1:5 w/w drug/polymer ratios by quench cooling. We employed a 6 cp HPMC 2910 material and two HPMC 2208 samples at 4000 and 100 000 cp. Hyphenated X-ray diffraction (XRD)-differential scanning calorimetry (DSC) studies show that the 6 and 100 000 cp HPMCs and 4 cp EC polymers can stabilize FFA form IV by inhibiting the transition to form I during heating. It appears that the polymers stabilize FFA in both amorphous and metastable forms via a combination of intermolecular interactions and viscosity effects. Increasing the polymer content of the ASD also inhibits polymorphic transitions, with drug/polymer ratios of 1:5 w/w resulting in FFA remaining amorphous during heating. The comparison of FFA ASDs prepared with different samples of HPMCs and ECs suggests that the chemical substitution of the polymer (HPMC 2208 has 19-24% methoxy groups and 4-12% hydroxypropyl groups, while HPMC 2910 has 28-30% methoxy groups and 7-12% hydroxypropyl groups) plays a more significant role in directing polymorphic transitions than the viscosity. A previously unreported polymorph of FFA was also noted during heating but its structure could not be determined.


Asunto(s)
Ácido Flufenámico , Polímeros , Rastreo Diferencial de Calorimetría , Derivados de la Hipromelosa/química , Polímeros/química , Solubilidad , Difracción de Rayos X
12.
Mater Horiz ; 9(4): 1264-1272, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35112123

RESUMEN

Herein, we demonstrate for the first time compact ferrite ceramics with giant coercivity. The materials are manufactured via sintering single-domain Sr0.67Ca0.33Fe8Al4O19 particles synthesized by a citrate-nitrate auto-combustion method. The obtained ceramics show coercivities up to 22.5 kOe and natural ferromagnetic resonance frequencies (NFMR) in a sub-THz range of 160-282 GHz. At a maximum density of 95%, the sample displays coercivity of 18.5 kOe, which is the highest value among dense ferrite materials reported so far. In addition, we report an unusual blueshift of the NFMR frequency from 160 to 200 GHz, which occurs during material sintering.

13.
Chem Sci ; 12(12): 4494-4502, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-34163714

RESUMEN

Control over the spatial distribution of components in metal-organic frameworks has potential to unlock improved performance and new behaviour in separations, sensing and catalysis. We report an unprecedented single-step synthesis of multi-component metal-organic framework (MOF) nanoparticles based on the canonical ZIF-8 (Zn) system and its Cd analogue, which form with a core-shell structure whose internal interface can be systematically tuned. We use scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and a new composition gradient model to fit high-resolution X-ray diffraction data to show how core-shell composition and interface characteristics are intricately controlled by synthesis temperature and reaction composition. Particle formation is investigated by in situ X-ray diffraction, which reveals that the spatial distribution of components evolves with time and is determined by the interplay of phase stability, crystallisation kinetics and diffusion. This work opens up new possibilities for the control and characterisation of functionality, component distribution and interfaces in MOF-based materials.

14.
J Synchrotron Radiat ; 28(Pt 3): 790-803, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949987

RESUMEN

The widespread use and development of inertia friction welding is currently restricted by an incomplete understanding of the deformation mechanisms and microstructure evolution during the process. Understanding phase transformations and lattice strains during inertia friction welding is essential for the development of robust numerical models capable of determining optimized process parameters and reducing the requirement for costly experimental trials. A unique compact rig has been designed and used in-situ with a high-speed synchrotron X-ray diffraction instrument to investigate the microstructure evolution during inertia friction welding of a high-carbon steel (BS1407). At the contact interface, the transformation from ferrite to austenite was captured in great detail, allowing for analysis of the phase fractions during the process. Measurement of the thermal response of the weld reveals that the transformation to austenite occurs 230 °C below the equilibrium start temperature of 725 °C. It is concluded that the localization of large strains around the contact interface produced as the specimens deform assists this non-equilibrium phase transformation.

15.
Nano Lett ; 21(7): 2786-2792, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33797261

RESUMEN

A key property of many quantum materials is that their ground state depends sensitively on small changes of an external tuning parameter, e.g., doping, magnetic field, or pressure, creating opportunities for potential technological applications. Here, we explore tuning of the ground state of the nonsuperconducting parent compound, Fe1+xTe, of the iron chalcogenides by uniaxial strain. Iron telluride exhibits a peculiar (π, 0) antiferromagnetic order unlike the (π, π) order observed in the Fe-pnictide superconductors. The (π, 0) order is accompanied by a significant monoclinic distortion. We explore tuning of the ground state by uniaxial strain combined with low-temperature scanning tunneling microscopy. We demonstrate that, indeed under strain, the surface of Fe1.1Te undergoes a transition to a (π, π)-charge-ordered state. Comparison with transport experiments on uniaxially strained samples shows that this is a surface phase, demonstrating the opportunities afforded by 2D correlated phases stabilized near surfaces and interfaces.

16.
Nat Mater ; 20(8): 1121-1129, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33888903

RESUMEN

Lithium dendrite (filament) propagation through ceramic electrolytes, leading to short circuits at high rates of charge, is one of the greatest barriers to realizing high-energy-density all-solid-state lithium-anode batteries. Utilizing in situ X-ray computed tomography coupled with spatially mapped X-ray diffraction, the propagation of cracks and the propagation of lithium dendrites through the solid electrolyte have been tracked in a Li/Li6PS5Cl/Li cell as a function of the charge passed. On plating, cracking initiates with spallation, conical 'pothole'-like cracks that form in the ceramic electrolyte near the surface with the plated electrode. The spallations form predominantly at the lithium electrode edges where local fields are high. Transverse cracks then propagate from the spallations across the electrolyte from the plated to the stripped electrode. Lithium ingress drives the propagation of the spallation and transverse cracks by widening the crack from the rear; that is, the crack front propagates ahead of the Li. As a result, cracks traverse the entire electrolyte before the Li arrives at the other electrode, and therefore before a short circuit occurs.

17.
J Appl Crystallogr ; 53(Pt 6): 1434-1443, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33304221

RESUMEN

An experimental technique is described for the collection of time-resolved X-ray diffraction information from a complete commercial battery cell during discharging or charging cycles. The technique uses an 80 × 80 pixel 2D energy-discriminating detector in a pinhole camera geometry which can be used with a polychromatic X-ray source. The concept was proved in a synchrotron X-ray study of commercial alkaline Zn-MnO2 AA size cells. Importantly, no modification of the cell was required. The technique enabled spatial and temporal changes to be observed with a time resolution of 20 min (5 min of data collection with a 15 min wait between scans). Chemical changes in the cell determined from diffraction information were correlated with complementary X-ray tomography scans performed on similar cells from the same batch. The clearest results were for the spatial and temporal changes in the Zn anode. Spatially, there was a sequential transformation of Zn to ZnO in the direction from the separator towards the current collector. Temporally, it was possible to track the transformation of Zn to ZnO during the discharge and follow the corresponding changes in the cathode.

18.
Dalton Trans ; 48(16): 5299-5307, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30933206

RESUMEN

Tb for Ca substituted hydroxyapatite ceramic samples with composition Ca10-xTbx(PO4)6(OH1-x/2-δ)2, where x = 0.1, 0.5, were synthesized by solid-state reaction at 1300 °C in air, and their crystal structure, vibrational spectra, luminescence, and magnetic properties were studied. Implanting Tb3+ into the calcium apatite crystal lattice results in formation of an effective TbO+ ion which displays a short terbium-oxygen bond of 2.15 Å and a stretching vibration at 534 cm-1. The Tb3+ electronic structure has been revealed by analyzing the luminescence spectra and dc/ac magnetization data. Accordingly, the ground state represents a pseudo doublet with MJ = ±6 and the first exited level is by 112 cm-1 higher in energy. The ion exhibits field induced magnetic bistability with the magnetization reversing over the first exited state. Three paths of magnetization relaxation with field-temperature controlled switching between the paths have been identified.

19.
Angew Chem Int Ed Engl ; 58(2): 566-571, 2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30440102

RESUMEN

There is an increasing amount of interest in metal-organic frameworks (MOFs) for a variety of applications, from gas sensing and separations to electronics and catalysis. However, the mechanisms by which they crystallize remain poorly understood. Herein, an important new insight into MOF formation is reported. It is shown that, prior to network assembly, crystallization intermediates in the canonical ZIF-8 system exist in a dynamic pre-equilibrium, which depends on the reactant concentrations and the progress of reaction. Concentration can, therefore, be used as a synthetic handle to directly control particle size, with potential implications for industrial scale-up and gas sorption applications. These findings enable the rationalization of apparent contradictions between previous studies of ZIF-8 and opens up new opportunities for the control of crystallization in network solids more generally.

20.
Adv Sci (Weinh) ; 5(1): 1700369, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29375967

RESUMEN

As the energy density of lithium-ion cells and batteries increases, controlling the outcomes of thermal runaway becomes more challenging. If the high rate of gas generation during thermal runaway is not adequately vented, commercial cell designs can rupture and explode, presenting serious safety concerns. Here, ultra-high-speed synchrotron X-ray imaging is used at >20 000 frames per second to characterize the venting processes of six different 18650 cell designs undergoing thermal runaway. For the first time, the mechanisms that lead to the most catastrophic type of cell failure, rupture, and explosion are identified and elucidated in detail. The practical application of the technique is highlighted by evaluating a novel 18650 cell design with a second vent at the base, which is shown to avoid the critical stages that lead to rupture. The insights yielded in this study shed new light on battery failure and are expected to guide the development of safer commercial cell designs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...