Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 103: 129690, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447786

RESUMEN

Autotaxin is a secreted lysophospholipase D which is a member of the ectonucleotide pyrophosphatase/phosphodiesterase family converting extracellular lysophosphatidylcholine and other non-choline lysophospholipids, such as lysophosphatidylethanolamine and lysophosphatidylserine, to the lipid mediator lysophosphatidic acid. Autotaxin is implicated in various fibroproliferative diseases including interstitial lung diseases, such as idiopathic pulmonary fibrosis and hepatic fibrosis, as well as in cancer. In this study, we present an effort of identifying ATX inhibitors that bind to allosteric ATX binding sites using the Enalos Asclepios KNIME Node. All the available PDB crystal structures of ATX were collected, prepared, and aligned. Visual examination of these structures led to the identification of four crystal structures of human ATX co-crystallized with four known inhibitors. These inhibitors bind to five binding sites with five different binding modes. These five binding sites were thereafter used to virtually screen a compound library of 14,000 compounds to identify molecules that bind to allosteric sites. Based on the binding mode and interactions, the docking score, and the frequency that a compound comes up as a top-ranked among the five binding sites, 24 compounds were selected for in vitro testing. Finally, two compounds emerged with inhibitory activity against ATX in the low micromolar range, while their mode of inhibition and binding pattern were also studied. The two derivatives identified herein can serve as "hits" towards developing novel classes of ATX allosteric inhibitors.


Asunto(s)
Lisofosfolípidos , Neoplasias , Humanos , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Neoplasias/metabolismo , Sitios de Unión , Sitio Alostérico
2.
Arch Insect Biochem Physiol ; 115(1): e22071, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288483

RESUMEN

The single domain von Willebrand factor type C (SVWC) appears in small secreted peptides that are arthropod-specific and are produced following environmental stress or pathogen exposure. Most research has focused on proteins with SVWC domain that are induced after virus infection and are hypothesized to function as "cytokines" to regulate the innate immune response. The expansion of SVWC genes in insect species indicates that many other functions remain to be discovered. Research in shrimp has elucidated the adaptability of Vago-like peptides in the innate immune response against bacteria, fungi and viruses after activation by Jak-STAT and/or Toll/Imd pathways in which they can act as pathogen-recognition receptors or cytokine-like signaling molecules. SVWC factors also appear in scorpion venoms and tick saliva, underlining their versatility to acquire new functions. This review discusses the discovery and function of SVWC peptides from insects to crustaceans and chelicerates and reveals the enormous gaps in knowledge that remain to be filled to understand this enigmatic group of secreted peptides.


Asunto(s)
Citocinas , Factor de von Willebrand , Animales , Factor de von Willebrand/metabolismo , Insectos/metabolismo , Inmunidad Innata , Péptidos
3.
J Hepatol ; 80(1): 140-154, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37741346

RESUMEN

Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.


Asunto(s)
Carcinoma Hepatocelular , Hepatopatías Alcohólicas , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Hepatopatías Alcohólicas/metabolismo , Carcinoma Hepatocelular/patología , Fosfolípidos/metabolismo , Neoplasias Hepáticas/patología , Hígado/patología
4.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176032

RESUMEN

Autotaxin (ATX) or Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a secreted enzyme with lysophospholipase D activity, with its primary function being the extracellular hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a bioactive lipid [...].


Asunto(s)
Neoplasias , Hidrolasas Diéster Fosfóricas , Humanos , Lisofosfolípidos , Desarrollo Embrionario
5.
Eur J Med Chem ; 249: 115130, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702053

RESUMEN

Robust experimental evidence has highlighted the role of Autotaxin (ATX)/Lysophosphatidic acid (LPA) axis not only in the pathogenesis of chronic inflammatory conditions and especially in fibroproliferative diseases but also in several types of cancer. As a result, different series of substrate-, lipid-based and small-molecule ATX inhibitors have been identified thus far by both academia and pharma. The "crowning achievement" of these drug discovery campaigns was the development and entry of the first-in-class ATX inhibitor (ziritaxestat, GLPG-1690) in advanced clinical trials against idiopathic pulmonary fibrosis. Herein, the potency optimization efforts of a new series of Autotaxin inhibitors, namely 2-substituted-2,6-dihydro-4H-thieno[3,4-c]pyrazol-1-substituted amide, is described using a previously identified novel chemical scaffold as a "hit". The mode of inhibition of the most promising ATX inhibitors was investigated, while their cellular activity, aqueous solubility and cytotoxicity were evaluated. Our pharmacological results were corroborated by chemoinformatic tools (molecular docking and molecular dynamics simulations) deployed, to provide insight into the binding mechanism of the synthesized inhibitors to ATX.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias , Humanos , Quimioinformática , Enfermedad Crónica , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Hidrolasas Diéster Fosfóricas/metabolismo
6.
Diagnostics (Basel) ; 12(8)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-36010216

RESUMEN

Autotaxin (ATX) is the ectoenzyme producing the bulk of lysophosphatidic acid (LPA) in circulation. ATX and LPA-mediated signaling (the ATX-LPA axis) play critical roles in the vascular and nervous system development. In adults, this axis contributes to diverse processes, including coagulation, inflammation, fibroproliferation and angiogenesis under physiological and/or pathophysiological conditions. Given evidence implicating several of these processes in chronic subdural hematoma (CSDH) pathogenesis and development, we assessed ATX activity in CSDH patients. Twenty-eight patients were recruited. Blood and hematoma fluid were collected. Enzymatic assays were used to establish serum and hematoma ATX activity. Enzyme-linked immunosorbent assays were used to establish hematoma beta trace (BT) levels, a cerebrospinal fluid (CSF) marker, in a hematoma. ATX activity was nearly three folds higher in hematoma compared to serum (P < 0.001). There was no significant correlation between BT levels and ATX activity in a hematoma. The present results show, for the first time, that ATX is catalytically active in the hematoma fluid of CSDH patients. Moreover, our findings of significantly elevated ATX activity in hematoma compared to serum, implicate the ATX-LPA axis in CSDH pathophysiology. The CSF origin of ATX could not be inferred with the present results. Additional research is warranted to establish the significance of the ATX-LPA axis in CSDH and its potential as a biomarker and/or therapeutic target.

7.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806457

RESUMEN

Chronic kidney disease (CKD) refers to a spectrum of diseases defined by renal fibrosis, permanent alterations in kidney structure, and low glomerular-filtration rate. Prolonged epithelial-tubular damage involves a series of changes that eventually lead to CKD, highlighting the importance of tubular epithelial cells in this process. Lysophosphatidic acid (LPA) is a bioactive lipid that signals mainly through its six cognate LPA receptors and is implicated in several chronic inflammatory pathological conditions. In this report, we have stimulated human proximal tubular epithelial cells (HKC-8) with LPA and 175 other possibly pathological stimuli, and simultaneously detected the levels of 27 intracellular phosphoproteins and 32 extracellular secreted molecules with multiplex ELISA. This quantification revealed a large amount of information concerning the signaling and the physiology of HKC-8 cells that can be extrapolated to other proximal tubular epithelial cells. LPA responses clustered with pro-inflammatory stimuli such as TNF and IL-1, promoting the phosphorylation of important inflammatory signaling hubs, including CREB1, ERK1, JUN, IκΒα, and MEK1, as well as the secretion of inflammatory factors of clinical relevance, including CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8, most of them shown for the first time in proximal tubular epithelial cells. The identified LPA-induced signal-transduction pathways, which were pharmacologically validated, and the secretion of the inflammatory factors offer novel insights into the possible role of LPA in CKD pathogenesis.


Asunto(s)
Lisofosfolípidos , Insuficiencia Renal Crónica , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Receptores del Ácido Lisofosfatídico/metabolismo , Insuficiencia Renal Crónica/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 42(8): 1023-1036, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35708027

RESUMEN

BACKGROUND: Maladapted endothelial cells (ECs) secrete ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin)-a lysophospholipase D that generates lysophosphatidic acids (LPAs). ENPP2 derived from the arterial wall promotes atherogenic monocyte adhesion induced by generating LPAs, such as arachidonoyl-LPA (LPA20:4), from oxidized lipoproteins. Here, we aimed to determine the role of endothelial ENPP2 in the production of LPAs and atherosclerosis. METHODS: We quantified atherosclerosis in mice harboring loxP-flanked Enpp2 alleles crossed with Apoe-/- mice expressing tamoxifen-inducible Cre recombinase under the control of the EC-specific bone marrow X kinase promoter after 12 weeks of high-fat diet feeding. RESULTS: A tamoxifen-induced EC-specific Enpp2 knockout decreased atherosclerosis, accumulation of lesional macrophages, monocyte adhesion, and expression of endothelial CXCL (C-X-C motif chemokine ligand) 1 in male and female Apoe-/- mice. In vitro, ENPP2 mediated the mildly oxidized LDL (low-density lipoprotein)-induced expression of CXCL1 in aortic ECs by generating LPA20:4, palmitoyl-LPA (LPA16:0), and oleoyl-LPA (LPA18:1). ENPP2 and its activity were detected on the endothelial surface by confocal imaging. The expression of endothelial Enpp2 established a strong correlation between the plasma levels of LPA16:0, stearoyl-LPA (LPA18:0), and LPA18:1 and plaque size and a strong negative correlation between the LPA levels and ENPP2 activity in the plasma. Moreover, endothelial Enpp2 knockout increased the weight of high-fat diet-fed male Apoe-/- mice. CONCLUSIONS: We demonstrated that the expression of ENPP2 in ECs promotes atherosclerosis and endothelial inflammation in a sex-independent manner. This might be due to the generation of LPA20:4, LPA16:0, and LPA18:1 from mildly oxidized lipoproteins on the endothelial surface.


Asunto(s)
Aterosclerosis , Células Endoteliales , Hidrolasas Diéster Fosfóricas , Animales , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Femenino , Lisofosfolípidos , Masculino , Ratones , Ratones Noqueados para ApoE , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Tamoxifeno
9.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977539

RESUMEN

Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids, largely responsible for extracellular lysophosphatidic acid (LPA) production. LPA is a bioactive growth-factor-like lysophospholipid that exerts pleiotropic effects in almost all cell types, exerted through at least six G-protein-coupled receptors (LPAR1-6). Increased ATX expression has been detected in different chronic inflammatory diseases, while genetic or pharmacological studies have established ATX as a promising therapeutic target, exemplified by the ongoing phase III clinical trial for idiopathic pulmonary fibrosis. In this report, we employed an in silico drug discovery workflow, aiming at the identification of structurally novel series of ATX inhibitors that would be amenable to further optimization. Towards this end, a virtual screening protocol was applied involving the search into molecular databases for new small molecules potentially binding to ATX. The crystal structure of ATX in complex with a known inhibitor (HA-155) was used as a molecular model docking reference, yielding a priority list of 30 small molecule ATX inhibitors, validated by a well-established enzymatic assay of ATX activity. The two most potent, novel and structurally different compounds were further structurally optimized by deploying further in silico tools, resulting to the overall identification of six new ATX inhibitors that belong to distinct chemical classes than existing inhibitors, expanding the arsenal of chemical scaffolds and allowing further rational design.


Asunto(s)
Bases de Datos de Proteínas , Inhibidores Enzimáticos/química , Hidrolasas Diéster Fosfóricas/química , Bibliotecas de Moléculas Pequeñas , Animales , Enfermedad Crónica , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/enzimología , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Relación Estructura-Actividad
10.
PLoS One ; 15(4): e0226050, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32240164

RESUMEN

Autotaxin (ATX) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a growth factor-like signaling lysophospholipid. ATX and LPA signaling have been incriminated in the pathogenesis of different chronic inflammatory diseases and various types of cancer. In this report, deregulated ATX and LPA levels were detected in the spinal cord and plasma of mice during the development of experimental autoimmune encephalomyelitis (EAE). Among the different sources of ATX expression in the inflamed spinal cord, F4/80+ CD11b+ cells, mostly activated macrophages and microglia, were found to express ATX, further suggesting an autocrine role for ATX/LPA in their activation, an EAE hallmark. Accordingly, ATX genetic deletion from CD11b+ cells attenuated the severity of EAE, thus proposing a pathogenic role for the ATX/LPA axis in neuroinflammatory disorders.


Asunto(s)
Encefalomielitis Autoinmune Experimental/genética , Lisofosfolípidos/genética , Esclerosis Múltiple/genética , Hidrolasas Diéster Fosfóricas/genética , Animales , Antígeno CD11b/genética , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/sangre , Encefalomielitis Autoinmune Experimental/fisiopatología , Eliminación de Gen , Expresión Génica/genética , Humanos , Lisofosfolípidos/biosíntesis , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Microglía/metabolismo , Microglía/patología , Esclerosis Múltiple/sangre , Esclerosis Múltiple/fisiopatología , Transducción de Señal/genética , Médula Espinal/metabolismo , Médula Espinal/fisiopatología
11.
Bioorg Med Chem ; 28(2): 115216, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31864778

RESUMEN

Autotaxin (ATX), a glycoprotein (~125 kDa) isolated as an autocrine motility factor from melanoma cells, belongs to a seven-membered family of ectonucleotide pyrophosphatase/phosphodiesterase (ENPP), and exhibits lysophospholipase D activity. ATX is responsible for the hydrolysis of lysophosphatidylcholine (LPC) to produce the bioactive lipid lysophosphatidic acid (LPA), which is upregulated in a variety of pathological inflammatory conditions, including fibrosis, cancer, liver toxicity and thrombosis. Given its role in human disease, the ATX-LPA axis is an interesting target for therapy, and the development of novel potent ATX inhibitors is of great importance. In the present work a novel class of ATX inhibitors, optically active derivatives of 2-pyrrolidinone and pyrrolidine heterocycles were synthesized. Some of them exhibited interesting in vitro activity, namely the hydroxamic acid 16 (IC50 700 nM) and the carboxylic acid 40b (IC50 800 nM), while the boronic acid derivatives 3k (IC50 50 nM), 3l (IC50 120 nM), 3 m (IC50 180 nM) and 21 (IC50 35 nM) were found to be potent inhibitors of ATX.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Pirrolidinas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Hidrolasas Diéster Fosfóricas/química , Pirrolidinas/síntesis química , Pirrolidinas/química , Relación Estructura-Actividad
12.
Cancers (Basel) ; 11(11)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652837

RESUMEN

Liver cancer is one of the leading causes of death worldwide due to late diagnosis and scarcity of treatment options. The major risk factor for liver cancer is cirrhosis with the underlying causes of cirrhosis being viral infection (hepatitis B or C), metabolic deregulation (Non-alcoholic fatty liver disease (NAFLD) in the presence of obesity and diabetes), alcohol or cholestatic disorders. Lysophosphatidic acid (LPA) is a bioactive phospholipid with numerous effects, most of them compatible with the hallmarks of cancer (proliferation, migration, invasion, survival, evasion of apoptosis, deregulated metabolism, neoangiogenesis, etc.). Autotaxin (ATX) is the enzyme responsible for the bulk of extracellular LPA production, and together with LPA signaling is involved in chronic inflammatory diseases, fibrosis and cancer. This review discusses the most important findings and the mechanisms related to ATX/LPA/LPAR involvement on metabolic, viral and cholestatic liver disorders and their progression to liver cancer in the context of human patients and mouse models. It focuses on the role of ATX/LPA in NAFLD development and its progression to liver cancer as NAFLD has an increasing incidence which is associated with the increasing incidence of liver cancer. Bearing in mind that adipose tissue accounts for the largest amount of LPA production, many studies have implicated LPA in adipose tissue metabolism and inflammation, liver steatosis, insulin resistance, glucose intolerance and lipogenesis. At the same time, LPA and ATX play crucial roles in fibrotic diseases. Given that hepatocellular carcinoma (HCC) is usually developed on the background of liver fibrosis, therapies that both delay the progression of fibrosis and prevent its development to malignancy would be very promising. Therefore, ATX/LPA signaling appears as an attractive therapeutic target as evidenced by the fact that it is involved in both liver fibrosis progression and liver cancer development.

13.
J Autoimmun ; 104: 102327, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31471142

RESUMEN

Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids including blood. ATX catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a growth factor-like, signaling phospholipid. LPA exerts pleiotropic effects mediated by its G-protein-coupled receptors that are widely expressed and exhibit overlapping specificities. Although ATX also possesses matricellular properties, the majority of ATX reported functions in adulthood are thought to be mediated through the extracellular production of LPA. ATX-mediated LPA synthesis is likely localized at the cell surface through the possible interaction of ATX with integrins or other molecules, while LPA levels are further controlled by a group of membrane-associated lipid-phosphate phosphatases. ATX expression was shown to be necessary for embryonic development, and ATX deficient embryos exhibit defective vascular homeostasis and aberrant neuronal system development. In adult life, ATX is highly expressed in the adipose tissue and has been implicated in diet-induced obesity and glucose homeostasis with multiple implications in metabolic disorders. Additionally, LPA has been shown to affect multiple cell types, including stromal and immune cells in various ways. Therefore, LPA participates in many processes that are intricately involved in the pathogenesis of different chronic inflammatory diseases such as vascular homeostasis, skeletal and stromal remodeling, lymphocyte trafficking and immune regulation. Accordingly, increased ATX and LPA levels have been detected, locally and/or systemically, in patients with chronic inflammatory diseases, most notably idiopathic pulmonary fibrosis (IPF), chronic liver diseases, and rheumatoid arthritis. Genetic and pharmacological studies in mice have confirmed a pathogenetic role for ATX expression and LPA signaling in chronic inflammatory diseases, and provided the proof of principle for therapeutic interventions, as exemplified by the ongoing clinical trials for IPF.


Asunto(s)
Artritis Reumatoide , Fibrosis Pulmonar Idiopática , Hepatopatías , Hidrolasas Diéster Fosfóricas , Transducción de Señal , Animales , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Enfermedad Crónica , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/inmunología , Fibrosis Pulmonar Idiopática/patología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Hepatopatías/genética , Hepatopatías/inmunología , Hepatopatías/patología , Ratones , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología
14.
Front Med (Lausanne) ; 5: 180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29951481

RESUMEN

Lysophospholipid signaling is emerging as a druggable regulator of pathophysiological responses, and especially fibrosis, exemplified by the relative ongoing clinical trials in idiopathic pulmonary fibrosis (IPF) patients. In this review, we focus on ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2), or as more widely known Autotaxin (ATX), a secreted lysophospholipase D (lysoPLD) largely responsible for extracellular lysophosphatidic acid (LPA) production. In turn, LPA is a bioactive phospholipid autacoid, forming locally upon increased ATX levels and acting also locally through its receptors, likely guided by ATX's structural conformation and cell surface associations. Increased ATX activity levels have been detected in many inflammatory and fibroproliferative conditions, while genetic and pharmacologic studies have confirmed a pleiotropic participation of ATX/LPA in different processes and disorders. In pulmonary fibrosis, ATX levels rise in the broncheoalveolar fluid (BALF) and stimulate LPA production. LPA engagement of its receptors activate multiple G-protein mediated signal transduction pathways leading to different responses from pulmonary cells including the production of pro-inflammatory signals from stressed epithelial cells, the modulation of endothelial physiology, the activation of TGF signaling and the stimulation of fibroblast accumulation. Genetic or pharmacologic targeting of the ATX/LPA axis attenuated disease development in animal models, thus providing the proof of principle for therapeutic interventions.

15.
Cancer Res ; 78(13): 3634-3644, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29724718

RESUMEN

Pathogenesis and progression of lung cancer are governed by complex interactions between the environment and host genetic susceptibility, which is further modulated by genetic and epigenetic changes. Autotaxin (ATX, ENPP2) is a secreted glycoprotein that catalyzes the extracellular production of lysophosphatidic acid (LPA), a growth-factor-like phospholipid that is further regulated by phospholipid phosphatases (PLPP). LPA's pleiotropic effects in almost all cell types are mediated through at least six G-protein coupled LPA receptors (LPAR) that exhibit overlapping specificities, widespread distribution, and differential expression profiles. Here we use both preclinical models of lung cancer and clinical samples (from patients and healthy controls) to investigate the expression levels, activity, and biological role of the above components of the ATX/LPA axis in lung cancer. ENPP2 was genetically altered in 8% of patients with lung cancer, whereas increased ATX staining and activity were detected in patient biopsies and sera, respectively. Moreover, PLPP3 expression was consistently downregulated in patients with lung cancer. Comparable observations were made in the two most widely used animal models of lung cancer, the carcinogen urethane-induced and the genetically engineered K-rasG12D -driven models, where genetic deletion of Enpp2 or Lpar1 resulted in disease attenuation, thus confirming a procarcinogenic role of LPA signaling in the lung. Expression profiling data analysis suggested that metabolic rewiring may be implicated in the procarcinogenic effects of the ATX/LPA axis in K-ras- G12D -driven lung cancer pathogenesis.Significance: These findings establish the role of ATX/LPA in lung carcinogenesis, thus expanding the mechanistic links between pulmonary fibrosis and cancer. Cancer Res; 78(13); 3634-44. ©2018 AACR.


Asunto(s)
Carcinogénesis/patología , Neoplasias Pulmonares/patología , Lisofosfolípidos/metabolismo , Fosfatidato Fosfatasa/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Anciano , Animales , Conjuntos de Datos como Asunto , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/patología , Neoplasias Pulmonares/genética , Masculino , Ratones , Persona de Mediana Edad , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Hidrolasas Diéster Fosfóricas/genética , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Uretano/toxicidad
16.
PLoS One ; 10(7): e0133619, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26196781

RESUMEN

Acute Lung Injury (ALI) is a life-threatening, diffuse heterogeneous lung injury characterized by acute onset, pulmonary edema and respiratory failure. Lipopolysaccharide (LPS) is a common cause of both direct and indirect lung injury and when administered to a mouse induces a lung phenotype exhibiting some of the clinical characteristics of human ALI. Here, we report that LPS inhalation in mice results in increased bronchoalveolar lavage fluid (BALF) levels of Autotaxin (ATX, Enpp2), a lysophospholipase D largely responsible for the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA) in biological fluids and chronically inflamed sites. In agreement, gradual increases were also detected in BALF LPA levels, following inflammation and pulmonary edema. However, genetic or pharmacologic targeting of ATX had minor effects in ALI severity, suggesting no major involvement of the ATX/LPA axis in acute inflammation. Moreover, systemic, chronic exposure to increased ATX/LPA levels was shown to predispose to and/or to promote acute inflammation and ALI unlike chronic inflammatory pathophysiological situations, further suggesting a differential involvement of the ATX/LPA axis in acute versus chronic pulmonary inflammation.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Lisofosfolípidos/toxicidad , Hidrolasas Diéster Fosfóricas/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Animales , Líquido del Lavado Bronquioalveolar/química , Lipopolisacáridos/toxicidad , Lisofosfolípidos/metabolismo , Ratones , Ratones Endogámicos C57BL
17.
Insect Biochem Mol Biol ; 41(12): 993-1002, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22015579

RESUMEN

In the tripartite parasitization system of the lepidopteran host Manduca sexta, the endoparasitoid wasp Cotesia congregata and its endosymbiotic virus, C. congregata Bracovirus (CcBV), the expression of viral proteins is necessary for successful parasitization. Here we have examined the in vitro effects of six members of the ankyrin-repeat protein family (Ank) of CcBV, which are thought to interfere with the host's induced innate immune responses, on the transcriptional activity of a heterologous lepidopteran Rel/NFκB transcription factor, Relish1 of Bombyx mori. Using as transcriptional activator BmRelish1-d2 (R1d2), a constitutively active mutant of the major regulator of the Imd pathway, BmRelish1, in conjunction with a reporter gene controlled by a B. mori antimicrobial peptide gene promoter, we have found that 5 of the 6 examined Anks suppress R1d2-dependent transcriptional activity to various degrees. Immunofluorescence studies have also revealed that while some of the Ank proteins have a rather strict cytoplasmic localization, others are detected both in the cytoplasm and the nucleus of the expressing cells and that colocalization with R1d2 occurs exclusively in the nucleus. Thus, our results suggest that functional and spatial differences among the various CcBV Ank family members may be responsible for the observed differential inhibition of R1d2 activity.


Asunto(s)
Interacciones Huésped-Parásitos , Proteínas de Insectos/metabolismo , Manduca/inmunología , Proteínas Virales/metabolismo , Avispas/virología , Animales , Repetición de Anquirina , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Expresión Génica , Manduca/parasitología , Manduca/virología
18.
BMC Bioinformatics ; 5: 138, 2004 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-15453918

RESUMEN

BACKGROUND: The insect exoskeleton or cuticle is a bi-partite composite of proteins and chitin that provides protective, skeletal and structural functions. Little information is available about the molecular structure of this important complex that exhibits a helicoidal architecture. Scores of sequences of cuticular proteins have been obtained from direct protein sequencing, from cDNAs, and from genomic analyses. Most of these cuticular protein sequences contain motifs found only in arthropod proteins. DESCRIPTION: cuticleDB is a relational database containing all structural proteins of Arthropod cuticle identified to date. Many come from direct sequencing of proteins isolated from cuticle and from sequences from cDNAs that share common features with these authentic cuticular proteins. It also includes proteins from the Drosophila melanogaster and the Anopheles gambiae genomes, that have been predicted to be cuticular proteins, based on a Pfam motif (PF00379) responsible for chitin binding in Arthropod cuticle. The total number of the database entries is 445: 370 derive from insects, 60 from Crustacea and 15 from Chelicerata. The database can be accessed from our web server at http://bioinformatics.biol.uoa.gr/cuticleDB. CONCLUSIONS: CuticleDB was primarily designed to contain correct and full annotation of cuticular protein data. The database will be of help to future genome annotators. Users will be able to test hypotheses for the existence of known and also of yet unknown motifs in cuticular proteins. An analysis of motifs may contribute to understanding how proteins contribute to the physical properties of cuticle as well as to the precise nature of their interaction with chitin.


Asunto(s)
Artrópodos/genética , Bases de Datos de Proteínas , Proteínas de Insectos/genética , Secuencias de Aminoácidos , Animales , Anopheles/genética , Artrópodos/clasificación , Clasificación , Bases de Datos de Proteínas/clasificación , Bases de Datos de Proteínas/estadística & datos numéricos , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Almacenamiento y Recuperación de la Información/métodos , Proteínas de Insectos/clasificación , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...