Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 15(11): e17810, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37807875

RESUMEN

One of the defining features of acute myeloid leukemia (AML) is an arrest of myeloid differentiation whose molecular determinants are still poorly defined. Pharmacological removal of the differentiation block contributes to the cure of acute promyelocytic leukemia (APL) in the absence of cytotoxic chemotherapy, but this approach has not yet been translated to non-APL AMLs. Here, by investigating the function of hypoxia-inducible transcription factors HIF1α and HIF2α, we found that both genes exert oncogenic functions in AML and that HIF2α is a novel regulator of the AML differentiation block. Mechanistically, we found that HIF2α promotes the expression of transcriptional repressors that have been implicated in suppressing AML myeloid differentiation programs. Importantly, we positioned HIF2α under direct transcriptional control by the prodifferentiation agent all-trans retinoic acid (ATRA) and demonstrated that HIF2α blockade cooperates with ATRA to trigger AML cell differentiation. In conclusion, we propose that HIF2α inhibition may open new therapeutic avenues for AML treatment by licensing blasts maturation and leukemia debulking.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Humanos , Factores de Transcripción/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Tretinoina/farmacología , Tretinoina/metabolismo , Tretinoina/uso terapéutico , Regulación de la Expresión Génica , Diferenciación Celular , Leucemia Promielocítica Aguda/tratamiento farmacológico
2.
Nucleic Acids Res ; 51(20): 11024-11039, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37823593

RESUMEN

The promyelocytic leukemia (PML) protein organizes nuclear aggregates known as PML nuclear bodies (PML-NBs), where many transcription factors localize to be regulated. In addition, associations of PML and PML-NBs with chromatin are described in various cell types, further implicating PML in transcriptional regulation. However, a complete understanding of the functional consequences of PML association to DNA in cellular contexts where it promotes relevant phenotypes is still lacking. We examined PML chromatin association in triple-negative breast cancer (TNBC) cell lines, where it exerts important oncogenic functions. We find that PML associates discontinuously with large heterochromatic PML-associated domains (PADs) that contain discrete gene-rich euchromatic sub-domains locally depleted of PML. PML promotes heterochromatic organization in PADs and expression of pro-metastatic genes embedded in these sub-domains. Importantly, this occurs outside PML-NBs, suggesting that nucleoplasmic PML exerts a relevant gene regulatory function. We also find that PML plays indirect regulatory roles in TNBC cells by promoting the expression of pro-metastatic genes outside PADs. Our findings suggest that PML is an important transcriptional regulator of pro-oncogenic metagenes in TNBC cells, via transcriptional regulation and epigenetic organization of heterochromatin domains that embed regions of local transcriptional activity.


Asunto(s)
Cromatina , Neoplasias de la Mama Triple Negativas , Humanos , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral
3.
Front Oncol ; 12: 973978, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059690

RESUMEN

To cope with hypoxic stress, ancient organisms have developed evolutionally conserved programs centered on hypoxia-inducible transcriptional factors (HIFs). HIFs and their regulatory proteins have evolved as rheostats to adapt cellular metabolism to atmospheric oxygen fluctuations, but the amplitude of their transcriptional programs has tremendously increased along evolution to include a wide spectrum of physiological and pathological processes. The bone marrow represents a notable example of an organ that is physiologically exposed to low oxygen levels and where basal activation of hypoxia signaling appears to be intrinsically wired within normal and neoplastic hematopoietic cells. HIF-mediated responses are mainly piloted by the oxygen-labile α subunits HIF1α and HIF2α, and current literature suggests that these genes have a functional specification that remains to be fully defined. Since their identification in the mid 90s, HIF factors have been extensively studied in solid tumors, while their implication in leukemia has lagged behind. In the last decades however, many laboratories have addressed the function of hypoxia signaling in leukemia and obtained somewhat contradictory results. Suppression of HIFs expression in different types of leukemia has unveiled common leukemia-promoting functions such as stimulation of bone marrow neoangiogenesis, maintenance of leukemia stem cells and chemoresistance. However, genetic studies are revealing that a definition of HIF factors as bona fide tumor promoters is overly simplistic, and, depending on the leukemia subtype, the specific oncogenic event, or the stage of leukemia development, activation of hypoxia-inducible genes may lead to opposite consequences. With this article we will provide an updated summary of the studies describing the regulation and function of HIF1α and HIF2α in blood malignancies, spanning from acute to chronic, lymphoid to myeloid leukemias. In discussing these data, we will attempt to provide plausible explanations to contradictory findings and point at what we believe are areas of weakness in which further investigations are urgently needed. Gaining additional knowledge into the role of hypoxia signaling in leukemia appears especially timely nowadays, as new inhibitors of HIF factors are entering the clinical arena for specific types of solid tumors but their utility for patients with leukemia is yet to be determined.

4.
Open Biol ; 10(5): 190262, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32397871

RESUMEN

The transcription factor HIF-1α is overexpressed in chronic lymphocytic leukaemia (CLL), where it promotes leukaemia progression by favouring the interaction of leukaemic cells with protective tissue microenvironments. Here, we tested the hypothesis that a pharmacological compound previously shown to inhibit HIF-1α may act as a chemosensitizer by interrupting protective microenvironmental interactions and exposing CLL cells to fludarabine-induced cytotoxicity. We found that the camptothecin-11 analogue EZN-2208 sensitizes CLL cells to fludarabine-induced apoptosis in cytoprotective in vitro cultures; in vivo EZN-2208 improves fludarabine responses, especially in early phases of leukaemia expansion, and exerts significant anti-leukaemia activity, thus suggesting that this or similar compounds may be considered as effective CLL therapeutic approaches.


Asunto(s)
Camptotecina/análogos & derivados , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Polietilenglicoles/administración & dosificación , Vidarabina/análogos & derivados , Adulto , Anciano , Animales , Camptotecina/administración & dosificación , Camptotecina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Trasplante de Neoplasias , Polietilenglicoles/farmacología , Resultado del Tratamiento , Microambiente Tumoral , Vidarabina/administración & dosificación , Vidarabina/farmacología
5.
Haematologica ; 105(4): 1042-1054, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31289209

RESUMEN

In chronic lymphocytic leukemia (CLL), the hypoxia-inducible factor 1 (HIF-1) regulates the response of tumor cells to hypoxia and their protective interactions with the leukemic microenvironment. In this study, we demonstrate that CLL cells from TP53-disrupted (TP53 dis) patients have constitutively higher expression levels of the α-subunit of HIF-1 (HIF-1α) and increased HIF-1 transcriptional activity compared to the wild-type counterpart. In the TP53 dis subset, HIF-1α upregulation is due to reduced expression of the HIF-1α ubiquitin ligase von Hippel-Lindau protein (pVHL). Hypoxia and stromal cells further enhance HIF-1α accumulation, independently of TP53 status. Hypoxia acts through the downmodulation of pVHL and the activation of the PI3K/AKT and RAS/ERK1-2 pathways, whereas stromal cells induce an increased activity of the RAS/ERK1-2, RHOA/RHOA kinase and PI3K/AKT pathways, without affecting pVHL expression. Interestingly, we observed that higher levels of HIF-1A mRNA correlate with a lower susceptibility of leukemic cells to spontaneous apoptosis, and associate with the fludarabine resistance that mainly characterizes TP53 dis tumor cells. The HIF-1α inhibitor BAY87-2243 exerts cytotoxic effects toward leukemic cells, regardless of the TP53 status, and has anti-tumor activity in Em-TCL1 mice. BAY87-2243 also overcomes the constitutive fludarabine resistance of TP53 dis leukemic cells and elicits a strongly synergistic cytotoxic effect in combination with ibrutinib, thus providing preclinical evidence to stimulate further investigation into use as a potential new drug in CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Animales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Ratones , Fosfatidilinositol 3-Quinasas/genética , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau
6.
Expert Opin Ther Targets ; 22(11): 917-928, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30345855

RESUMEN

INTRODUCTION: Hypoxia-inducible transcription factors have been identified as regulators of adaptive responses to hypoxia. Over the past 20 years, more than 8000 papers have described their increasingly complex role and regulation in cancer. Presently, it is recognized that hypoxia-inducible factors (HIFs) are regulated by oxygen-dependent and oxygen-independent mechanisms in cancer development; the list of their targets has increased to include more than 500 genes involved in most hallmarks of cancer. Areas covered: Most literature describes the function of HIF factors in solid tumors; however, in the past 10 years, evidence has steadily accumulated to indicate that HIFs are implicated in hematological malignancies. This review summarizes our current understanding of the function and regulation of HIF factors in hematopoiesis and leukemia. Moreover, we provide an update on pharmacological inhibitors of this pathway that have shown promising therapeutic effects in clinical trials or leukemia pre-clinical models. Expert opinion: The inhibition of the function of HIF factors may provide an interesting approach for treating leukemia. We posit that before moving into the clinic, we should (i) fully characterize the outcome of HIF inhibition in specific leukemia contexts (ii) test the possibility of combining HIF-targeting strategies with cytotoxic compounds and (iii) consider patient selection to increase therapeutic efficacy.


Asunto(s)
Antineoplásicos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Leucemia/tratamiento farmacológico , Animales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Leucemia/genética , Leucemia/patología , Terapia Molecular Dirigida , Oxígeno/metabolismo , Selección de Paciente
7.
Front Oncol ; 8: 255, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30073149

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy characterized by the accumulation of incompletely differentiated progenitor cells (blasts) in the bone marrow and blood, and by suppression of normal hematopoiesis. It has recently become apparent that the AML genome is characterized by recurrent mutations and dysregulations in epigenetic regulators. These mutations frequently occur before the onset of full blown leukemia, at the pre-leukemic phase, and persist in residual disease that remains after therapeutic intervention, thus suggesting that targeting the AML epigenome may help to eradicate minimal residual disease and prevent relapse. Within the AML epigenome, lysine-specific demethylase 1 A (LSD1) is a histone demethylase that is found frequently overexpressed, albeit not mutated, in AML. LSD1 is a required constituent of critical transcription repressor complexes like CoREST and nucleosome remodeling and deacetylase (NuRD), and abrogation of LSD1 expression results in impaired self-renewal and proliferation, and increased differentiation and apoptosis in AML models and primary cells, particularly in AMLs with MLL- and AML1-rearrangements, or erythroid and megakaryoblastic differentiation block. On this basis, a number of LSD1 inhibitors have been developed in the past decade, and few of them are currently being tested in clinical trials for patients with AML, along with other malignancies. To date, the most promising application of this therapeutic strategy appears to be combination therapy of LSD1 inhibitors with all-trans retinoic acid (ATRA) to reactivate myeloid differentiation in cells that are not spontaneously susceptible to ATRA treatment. In this review, we provide an overview of LSD1 function in normal hematopoiesis and leukemia, and of the current clinical application of LSD1 inhibitors for the treatment of patients with AML.

8.
Oncotarget ; 5(14): 5736-49, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25026278

RESUMEN

H-Prune hydrolyzes short-chain polyphosphates (PPase activity) together with an hitherto cAMP-phosphodiesterase (PDE), the latest influencing different human cancers by its overexpression. H-Prune promotes cell migration in cooperation with glycogen synthase kinase-3 (Gsk-3ß). Gsk-3ß is a negative regulator of canonical WNT/ß-catenin signaling. Here, we investigate the role of Gsk-3ß/h-Prune complex in the regulation of WNT/ß-catenin signaling, demonstrating the h-Prune capability to activate WNT signaling also in a paracrine manner, through Wnt3a secretion. In vivo study demonstrates that h-Prune silencing inhibits lung metastasis formation, increasing mouse survival. We assessed h-Prune levels in peripheral blood of lung cancer patients using ELISA assay, showing that h-Prune is an early diagnostic marker for lung cancer. Our study dissects out the mechanism of action of h-Prune in tumorigenic cells and also sheds light on the identification of a new therapeutic target in non-small-cell lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas Portadoras/sangre , Glucógeno Sintasa Quinasa 3/metabolismo , Neoplasias Pulmonares/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Portadoras/genética , Progresión de la Enfermedad , Femenino , Glucógeno Sintasa Quinasa 3 beta , Xenoinjertos , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Monoéster Fosfórico Hidrolasas , beta Catenina/genética
9.
Mol Cell Proteomics ; 13(8): 2114-31, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24912852

RESUMEN

Several genes encoding for proteins involved in proliferation, invasion, and apoptosis are known to be direct miR-34a targets. Here, we used proteomics to screen for targets of miR-34a in neuroblastoma (NBL), a childhood cancer that originates from precursor cells of the sympathetic nervous system. We examined the effect of miR-34a overexpression using a tetracycline inducible system in two NBL cell lines (SHEP and SH-SY5Y) at early time points of expression (6, 12, and 24 h). Proteome analysis using post-metabolic labeling led to the identification of 2,082 proteins, and among these 186 were regulated (112 proteins down-regulated and 74 up-regulated). Prediction of miR-34a targets via bioinformatics showed that 32 transcripts held miR-34a seed sequences in their 3'-UTR. By combining the proteomics data with Kaplan Meier gene-expression studies, we identified seven new gene products (ALG13, TIMM13, TGM2, ABCF2, CTCF, Ki67, and LYAR) that were correlated with worse clinical outcomes. These were further validated in vitro by 3'-UTR seed sequence regulation. In addition, Michigan Molecular Interactions searches indicated that together these proteins affect signaling pathways that regulate cell cycle and proliferation, focal adhesions, and other cellular properties that overall enhance tumor progression (including signaling pathways such as TGF-ß, WNT, MAPK, and FAK). In conclusion, proteome analysis has here identified early targets of miR-34a with relevance to NBL tumorigenesis. Along with the results of previous studies, our data strongly suggest miR-34a as a useful tool for improving the chance of therapeutic success with NBL.


Asunto(s)
Redes y Vías Metabólicas , MicroARNs/genética , Neuroblastoma/metabolismo , Proteómica/métodos , Regiones no Traducidas 3' , Línea Celular Tumoral , Dactinomicina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , MicroARNs/metabolismo , Neuroblastoma/genética , Tetraciclina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA