RESUMEN
Bacteria utilize type VI secretion system (T6SS) to deliver antibacterial toxins to target co-habiting bacteria. Here, we report that Burkholderia gladioli strain NGJ1 deploys certain T6SS effectors (TseTBg), having both DNase and RNase activities to kill target bacteria. RNase activity is prominent on NGJ1 as well as other bacterial RNA while DNase activity is pertinent to only other bacteria. The associated immunity (TsiTBg) proteins harbor non-canonical helix-turn-helix motifs and demonstrate transcriptional repression activity, similar to the antitoxins of type II toxin-antitoxin (TA) systems. Genome analysis reveals that homologs of TseTBg are either encoded as TA or T6SS effectors in diverse bacteria. Our results indicate that a new ORF (encoding a hypothetical protein) has evolved as a result of operonic fusion of TA type TseTBg homolog with certain T6SS-related genes by the action of IS3 transposable elements. This has potentially led to the conversion of a TA into T6SS effector in Burkholderia. Our study exemplifies that bacteria can recruit toxins of TA systems as T6SS weapons to diversify its arsenal to dominate during inter-bacterial competitions.
Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Tipo VI , Antibacterianos , Bacterias , Proteínas Bacterianas/genética , Desoxirribonucleasas , Sistemas de Secreción Tipo VI/genéticaRESUMEN
Microbiome plays an important role in plant growth and adaptation to various environmental conditions. The cross-talk between host plant and microbes (including microbe-microbe interactions) plays a crucial role in shaping the microbiome. Recent studies have highlighted that plant microbiome is enriched in genes encoding enzymes and natural products. Several novel antimicrobial compounds, bioactive natural products and lytic/degrading enzymes with industrial implications are being identified from the microbiome. Moreover, advancements in metagenomics and culture techniques are facilitating the development of synthetic microbial communities to promote sustainable agriculture. We discuss the recent advancements, opportunities and challenges in harnessing the full potential of plant microbiome.
Asunto(s)
Microbiota , Agricultura , Metagenómica , Interacciones Microbianas , Microbiota/genética , PlantasRESUMEN
Present study relates to the effect of valproic acid, an epigenetic modifier on the metabolic profile of Aspergillus fumigatus (GA-L7), an endophytic fungus isolated from Grewia asiatica L. Seven secondary metabolites were isolated from A. fumigatus (GA-L7) which were identified as: pseurotin A, pseurotin D, pseurotin F2, fumagillin, tryprostatin C, gliotoxin and bis(methylthio)gliotoxin. Addition of valproic acid in the growth medium resulted in the alteration of secondary metabolic profile with an enhanced production of a metabolite, fumiquinazoline C by tenfolds. In order to assess the effect of valproic acid on the biosynthetic pathway of fumiquinazoline C, we studied the expression of the genes involved in its biosynthesis, both in the valproic acid treated and untreated control culture. The results revealed that all the genes i.e. Afua_6g 12040, Afua_6g 12050, Afua_6g 12060, Afua_6g 12070 and Afua_6g 12080, involved in the biosynthesis of fumiquinazoline C were overexpressed significantly by 7.5, 8.8, 3.4, 5.6 and 2.1 folds respectively, resulting in overall enhancement of fumiquinazoline C production by about tenfolds.