Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biodivers Data J ; 12: e114809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38283142

RESUMEN

This paper describes a dataset of microbial communities from four different sponge species: Irciniaoros (Schmidt, 1864), Irciniavariabilis (Schmidt, 1862), Sarcotragusspinosulus Schmidt, 1862 and Sarcotragusfasciculatus (Pallas, 1766). The examined sponges all belong to Demospongiae (Class); Keratosa (Subclass); Dictyoceratida (Order); Irciniidae (Family). Samples were collected by scuba diving at depths between 6-14 m from two sampling sites of rocky formations at the northern coast of Crete (Cretan Sea, eastern Mediterranean) and were subjected to metabarcoding for the V5-V6 region of the 16S rRNA gene.

2.
Front Microbiol ; 14: 1188544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455712

RESUMEN

Introduction: Active hydrothermal vents of volcanic origin provide a remarkable manifestation of life on Earth under extreme conditions, which may have consequences for our understanding of habitability on other terrestrial bodies as well. Methods: Here, we performed for the first time Illumina sequencing of bacterial and archaeal communities on sub-seafloor samples collected from the Santorini-Kolumbo volcanic field. A total of 19 (3-m long) gravity corers were collected and processed for microbial community analysis. Results: From a total of 6,46,671 produced V4 sequences for all samples, a total of 10,496 different Operational Taxonomic Units (OTUs) were identified that were assigned to 40 bacterial and 9 archaeal phyla and 14 candidate divisions. On average, the most abundant phyla in all samples were Chloroflexi (Chloroflexota) (24.62%), followed by Proteobacteria (Pseudomonadota) (11.29%), Firmicutes (Bacillota) (10.73%), Crenarchaeota (Thermoproteota) (8.55%), and Acidobacteria (Acidobacteriota) (8.07%). At the genus level, a total of 286 known genera and candidate genera were mostly dominated by members of Bacillus, Thermoflexus, Desulfatiglans, Pseudoalteromonas, and Pseudomonas. Discussion: In most of the stations, the Chao1 values at the deeper layers were comparable to the surface sediment samples denoting the high diversity in the subsurface of these ecosystems. Heatmap analysis based on the 100 most abundant OTUs, grouped the sampling stations according to their geographical location, placing together the two hottest stations (up to 99°C). This result indicates that this specific area within the active Kolumbo crater create a distinct niche, where microorganisms with adaptation strategies to withstand heat stresses can thrive, such as the endospore-forming Firmicutes.

3.
Mol Ecol ; 32(7): 1608-1628, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36596297

RESUMEN

By evaluating genetic variation across the entire genome, one can address existing questions in a novel way while raising new ones. The latter includes how different local environments influence adaptive and neutral genomic variation within and among populations, providing insights into local adaptation of natural populations and their responses to global change. Here, under a seascape genomic approach, ddRAD data of 4609 single nucleotide polymorphisms (SNPs) from 398 sardines (Sardina pilchardus) collected in 11 Mediterranean and one Atlantic site were generated. These were used along with oceanographic and ecological information to detect signals of adaptive divergence with gene flow across environmental gradients. The studied sardines constitute two clusters (FST  = 0.07), a pattern attributed to outlier loci, highlighting putative local adaptation. The trend in the number of days with sea surface temperature above 19°C, a critical threshold for successful sardine spawning, was crucial at all levels of population structuring with implications on the species' key biological processes. Outliers link candidate SNPs to the region's environmental heterogeneity. Our findings provide evidence for a dynamic equilibrium in which population structure is maintained by physical and ecological factors under the opposing influences of migration and selection. This dynamic in a natural system warrants continuous monitoring under a seascape genomic approach that might benefit from a temporal and more detailed spatial dimension. Our results may contribute to complementary studies aimed at providing deeper insights into the mechanistic processes underlying population structuring. Those are key to understanding and predicting future changes and responses of this highly exploited species in the face of climate change.


Asunto(s)
Genética de Población , Genómica , Mar Mediterráneo , Genoma , Adaptación Fisiológica/genética , Polimorfismo de Nucleótido Simple/genética
4.
Front Genet ; 12: 790850, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956332

RESUMEN

The Tetraodontidae family encompasses several species which attract scientific interest in terms of their ecology and evolution. The silver-cheeked toadfish (Lagocephalus sceleratus) is a well-known "invasive sprinter" that has invaded and spread, in less than a decade, throughout the Eastern and part of the Western Mediterranean Sea from the Red Sea through the Suez Canal. In this study, we built and analysed the first near-chromosome level genome assembly of L. sceleratus and explored its evolutionary landscape. Through a phylogenomic analysis, we positioned L. sceleratus closer to T. nigroviridis, compared to other members of the family, while gene family evolution analysis revealed that genes associated with the immune response have experienced rapid expansion, providing a genetic basis for studying how L. sceleratus is able to achieve highly successful colonisation. Moreover, we found that voltage-gated sodium channel (NaV 1.4) mutations previously connected to tetrodotoxin resistance in other pufferfishes are not found in L. sceleratus, highlighting the complex evolution of this trait. The high-quality genome assembly built here is expected to set the ground for future studies on the species biology.

5.
J Imaging ; 7(9)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34564098

RESUMEN

Several imaging techniques are used in biological and biomedical studies. Micro-computed tomography (micro-CT) is a non-destructive imaging technique that allows the rapid digitisation of internal and external structures of a sample in three dimensions and with great resolution. In this review, the strengths and weaknesses of some common imaging techniques applied in biological and biomedical fields, such as optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy, are presented and compared with the micro-CT technique through five use cases. Finally, the ability of micro-CT to create non-destructively 3D anatomical and morphological data in sub-micron resolution and the necessity to develop complementary methods with other imaging techniques, in order to overcome limitations caused by each technique, is emphasised.

6.
Gigascience ; 10(8)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34405237

RESUMEN

High-performance computing (HPC) systems have become indispensable for modern marine research, providing support to an increasing number and diversity of users. Pairing with the impetus offered by high-throughput methods to key areas such as non-model organism studies, their operation continuously evolves to meet the corresponding computational challenges. Here, we present a Tier 2 (regional) HPC facility, operating for over a decade at the Institute of Marine Biology, Biotechnology, and Aquaculture of the Hellenic Centre for Marine Research in Greece. Strategic choices made in design and upgrades aimed to strike a balance between depth (the need for a few high-memory nodes) and breadth (a number of slimmer nodes), as dictated by the idiosyncrasy of the supported research. Qualitative computational requirement analysis of the latter revealed the diversity of marine fields, methods, and approaches adopted to translate data into knowledge. In addition, hardware and software architectures, usage statistics, policy, and user management aspects of the facility are presented. Drawing upon the last decade's experience from the different levels of operation of the Institute of Marine Biology, Biotechnology, and Aquaculture HPC facility, a number of lessons are presented; these have contributed to the facility's future directions in light of emerging distribution technologies (e.g., containers) and Research Infrastructure evolution. In combination with detailed knowledge of the facility usage and its upcoming upgrade, future collaborations in marine research and beyond are envisioned.


Asunto(s)
Metodologías Computacionales , Biología Marina , Acuicultura/métodos , Biotecnología/métodos , Biología Marina/métodos , Programas Informáticos
7.
Sci Total Environ ; 775: 145818, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631558

RESUMEN

Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs), that can be detected in a variety of environments including the human body, adversely affecting global health. Bioremediation is an emerging field for the detoxification and removal of environmental pollutants, with novel biocatalysts appropriate for this task being in high demand. In this study, a biobank of novel fungal strains isolated as symbionts of marine invertebrates was screened for their ability to remove 2,4,5-trichlorobiphenyl (PCB29). The most efficient strains were studied further for their ability to express laccase activity, the most commonly associated extracellular activity involved in the removal of aromatic pollutants and encoded in fungi by the enzymatic class of multicopper oxidases (MCOs). The strain expressing the highest laccase activity, Cladosporium sp. TM138-S3, was cultivated in the presence of copper ions in a 12 L bioreactor and two enzymes exhibiting laccase activity were isolated from the culture broth through ion-exchange chromatography. The two enzymes, Lac1 and Lac2, were biochemically characterized and showed similar characteristics, although an improved ability to remove PCB29 (up to 71.2%) was observed for Lac2 in the presence of mediators. In parallel, we performed RNAseq of the strain growing in presence and absence of PCB29 and reconstructed its transcriptome assembly. Functional annotation allowed identifying the MCO repertoire of the fungus, consisting of 13 enzymes. Phylogenetic analysis of Ascomycete MCOs further allowed classifying these enzymes, revealing the diversity of laccase activities in Cladosporium sp. TM138-S3.


Asunto(s)
Ascomicetos , Lacasa , Ascomicetos/metabolismo , Biodegradación Ambiental , Lacasa/genética , Lacasa/metabolismo , Filogenia , Transcriptoma
8.
Sci Rep ; 11(1): 1336, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446715

RESUMEN

Although the rise of antibiotic and multidrug resistant bacteria is one of the biggest current threats to human health, our understanding of the mechanisms involved in antibiotic resistance selection remains scarce. We performed whole genome sequencing of 21 Pseudomonas strains, previously isolated from an active submarine volcano of Greece, the Kolumbo volcano. Our goal was to identify the genetic basis of the enhanced co-tolerance to antibiotics and acidity of these Pseudomonas strains. Pangenome analysis identified 10,908 Gene Clusters (GCs). It revealed that the numbers of phage-related GCs and sigma factors, which both provide the mechanisms of adaptation to environmental stressors, were much higher in the high tolerant Pseudomonas strains compared to the rest ones. All identified GCs of these strains were associated with antimicrobial and multidrug resistance. The present study provides strong evidence that the CO2-rich seawater of the volcano associated with low pH might be a reservoir of microorganisms carrying multidrug efflux-mediated systems and pumps. We, therefore, suggest further studies of other extreme environments (or ecosystems) and their associated physicochemical parameters (or factors) in the rise of antibiotic resistance.


Asunto(s)
Adaptación Fisiológica/genética , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano , Respiraderos Hidrotermales/microbiología , Pseudomonas/genética , Agua de Mar/microbiología , Grecia , Pseudomonas/aislamiento & purificación
9.
BMC Res Notes ; 12(1): 813, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852508

RESUMEN

OBJECTIVES: We report a transcriptome acquisition for the bath sponge Spongia officinalis, a non-model marine organism that hosts rich symbiotic microbial communities. To this end, a pipeline was developed to efficiently separate between bacterial expressed genes from those of eukaryotic origin. The transcriptome was produced to support the assessment of gene expression and, thus, the response of the sponge, to elevated temperatures, replicating conditions currently occurring in its native habitat. DATA DESCRIPTION: We describe the assembled transcriptome along with the bioinformatic pipeline used to discriminate between signals of metazoan and prokaryotic origin. The pipeline involves standard read pre-processing steps and incorporates extra analyses to identify and filter prokaryotic reads out of the analysis. The proposed pipeline can be followed to overcome the technical RNASeq problems characteristic for symbiont-rich metazoan organisms with low or non-existent tissue differentiation, such as sponges and cnidarians. At the same time, it can be valuable towards the development of approaches for parallel transcriptomic studies of symbiotic communities and the host.


Asunto(s)
Microbiota/genética , Poríferos/genética , Simbiosis/genética , Transcriptoma/genética , Animales , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Biología Computacional , Grecia , Filogenia , Poríferos/microbiología , ARN Ribosómico/genética , RNA-Seq/métodos
10.
Mar Environ Res ; 144: 102-110, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30654982

RESUMEN

As ocean acidification intensifies, there is growing global concern about the impacts that future pH levels are likely to have on marine life and ecosystems. By analogy, a steep decrease of seawater pH with depth is encountered inside the Kolumbo submarine volcano (northeast Santorini) as a result of natural CO2 venting, making this system ideal for ocean acidification research. Here, we investigated whether the increase of acidity towards deeper layers of Kolumbo crater had any effect on relevant phenotypic traits of bacterial isolates. A total of 31 Pseudomonas strains were isolated from both surface- (SSL) and deep-seawater layers (DSL), with the latter presenting a significantly higher acid tolerance. In particular, the DSL strains were able to cope with H+ levels that were 18 times higher. Similarly, the DSL isolates exhibited a significantly higher tolerance than SSL strains against six commonly used antibiotics and As(III). More importantly, a significant positive correlation was revealed between antibiotics and acid tolerance across the entire set of SSL and DSL isolates. Our findings imply that Pseudomonas species with higher resilience to antibiotics could be favored by the prospect of acidifying oceans. Further studies are required to determine if this feature is universal across marine bacteria and to assess potential ecological impacts.


Asunto(s)
Ácidos/farmacología , Antibacterianos/farmacología , Ecosistema , Respiraderos Hidrotermales/microbiología , Pseudomonas/efectos de los fármacos , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Océanos y Mares , Pseudomonas/clasificación , Pseudomonas/aislamiento & purificación , Agua de Mar/microbiología
11.
PLoS One ; 13(9): e0203866, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30208106

RESUMEN

The common dentex, Dentex dentex, is a fish species which inhabits marine environments in the Mediterranean and Northeast Atlantic regions. This is an important species from an ecological, economic and conservation perspective, however critical information on its population genetic structure is lacking. Most samples were obtained from the Mediterranean Sea (17 sites) with an emphasis around Corsica (5 sites), plus one Atlantic Ocean site. This provided an opportunity to examine genetic structuring at local and broader scales to provide science based data for the management of fishing stocks in the region. Two mitochondrial regions were examined (D-loop and COI) along with eight microsatellite loci. The COI data was combined with publicly available sequences and demonstrated past misidentification of common dentex. All markers indicated the absence of population genetic structure from the Bay of Biscay to the eastern Mediterranean Sea. Bayesian approaches, as well as the statistical tests performed on the allelic frequencies from microsatellite loci, indicated low differentiation between samples; there was only a slight (p = 0.05) indication of isolation by distance. Common dentex is a marine fish species with a unique panmictic population in the Mediterranean and likely in the Atlantic Ocean as well.


Asunto(s)
Núcleo Celular/genética , Mitocondrias/genética , Perciformes/genética , Alelos , Animales , Océano Atlántico , Teorema de Bayes , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Flujo Génico , Frecuencia de los Genes/genética , Variación Genética , Genética de Población/métodos , Mar Mediterráneo , Repeticiones de Microsatélite/genética , Filogenia
12.
Extremophiles ; 22(5): 825, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29492667

RESUMEN

In the original publication there is a mistake in the supplementary material. The correct supplementary material is provided in this correction article.

13.
Extremophiles ; 22(1): 13-27, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29067531

RESUMEN

Over the last decades, there has been growing interest about the ecological role of hydrothermal sulfide chimneys, their microbial diversity and associated biotechnological potential. Here, we performed dual-index Illumina sequencing of bacterial and archaeal communities on active and inactive sulfide chimneys collected from the Kolumbo hydrothermal field, situated on a geodynamic convergent setting. A total of 15,701 OTUs (operational taxonomic units) were assigned to 56 bacterial and 3 archaeal phyla, 133 bacterial and 16 archaeal classes. Active chimney communities were dominated by OTUs related to thermophilic members of Epsilonproteobacteria, Aquificae and Deltaproteobacteria. Inactive chimney communities were dominated by an OTU closely related to the archaeon Nitrosopumilus sp., and by members of Gammaproteobacteria, Deltaproteobacteria, Planctomycetes and Bacteroidetes. These lineages are closely related to phylotypes typically involved in iron, sulfur, nitrogen, hydrogen and methane cycling. Overall, the inactive sulfide chimneys presented highly diverse and uniform microbial communities, in contrast to the active chimney communities, which were dominated by chemolithoautotrophic and thermophilic lineages. This study represents one of the most comprehensive investigations of microbial diversity in submarine chimneys and elucidates how the dissipation of hydrothermal activity affects the structure of microbial consortia in these extreme ecological niches.


Asunto(s)
Respiraderos Hidrotermales/microbiología , Microbiota , Sulfuros/análisis , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hidrógeno/metabolismo , Respiraderos Hidrotermales/química , Hierro/metabolismo , Metano/metabolismo , Nitrógeno/metabolismo , Sulfuros/metabolismo
14.
Gigascience ; 6(12): 1-13, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126158

RESUMEN

Background: Teleosts of the genus Seriola, commonly known as amberjacks, are of high commercial value in international markets due to their flesh quality and worldwide distribution. The Seriola species of interest to Mediterranean aquaculture is the greater amberjack (Seriola dumerili). This species holds great potential for the aquaculture industry, but in captivity, reproduction has proved to be challenging, and observed growth dysfunction hinders their domestication. Insights into molecular mechanisms may contribute to a better understanding of traits like growth and sex, but investigations to unravel the molecular background of amberjacks have begun only recently. Findings: Illumina HiSeq sequencing generated a high-coverage greater amberjack genome sequence comprising 45 909 scaffolds. Comparative mapping to the Japanese yellowtail (Seriola quinqueriadiata) and to the model species medaka (Oryzias latipes) allowed the generation of in silico groups. Additional gonad transcriptome sequencing identified sex-biased transcripts, including known sex-determining and differentiation genes. Investigation of the muscle transcriptome of slow-growing individuals showed that transcripts involved in oxygen and gas transport were differentially expressed compared with fast/normal-growing individuals. On the other hand, transcripts involved in muscle functions were found to be enriched in fast/normal-growing individuals. Conclusion: The present study provides the first insights into the molecular background of male and female amberjacks and of fast- and slow-growing fish. Therefore, valuable molecular resources have been generated in the form of a first draft genome and a reference transcriptome. Sex-biased genes, which may also have roles in sex determination or differentiation, and genes that may be responsible for slow growth are suggested.


Asunto(s)
Proteínas de Peces/genética , Peces/genética , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Animales , Femenino , Peces/clasificación , Regulación de la Expresión Génica , Gónadas/metabolismo , Masculino , Anotación de Secuencia Molecular , Músculos/metabolismo , Especificidad de Órganos , Caracteres Sexuales
15.
J Biol Res (Thessalon) ; 24: 3, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28239596

RESUMEN

BACKGROUND: Elucidating the patterns of the Atlantic Bluefin tuna [ABFT, Thunnus thynnus (Linnaeus, 1758)] population structure constitutes a challenging task of great importance. Most of the unique challenges stem from its biology, as well as the attributes of the marine realm in which it disperses. Accurate information is urgently needed for stock assessment, and the identification of critical features to the persistence and adaptation of populations in order to formulate and adopt effective strategies for ABFT conservation and management. Conclusions of a great number of ABFT genetic studies on the Mediterranean Sea stock structure are rather controversial and not yet conclusive. In this study, ABFT genomic diversity was investigated in the Mediterranean Sea, which is the most important area for the species' reproduction. RESULTS: Analyzing genome-wide SNPs and microsatellites from ABFT samples collected throughout the Mediterranean Sea did not provide strong evidence of genetic structure, pointing towards the existence of a single panmictic unit. An alternative view would recognize a failure to reject the null hypothesis of a panmictic unit as an effect of the study's sampling design, the type of markers used, and the effectiveness/suitability of analysis methods in respect to the species biological characteristics or any combination of the above. CONCLUSIONS: Unravelling the drivers of ABFT population diversity would require the consideration of important aspects of the species spawning behavior for the determination of the appropriate sampling design. Novel approaches and methods of analysis that will bring together experts in genetics/-omics, ecology and oceanography are deemed necessary. Analyzing ABFT genetic data under the discipline of seascape genetics could provide the analysis framework under which major abiotic and biotic forces controlling ABFT recruitment could be identified, elucidating the complicated population dynamics of the species, while multiple and continuous fisheries monitoring should in all cases be considered as a prerequisite in order to achieve efficient and long-term ABFT conservation.

16.
Sci Rep ; 6: 28013, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27311383

RESUMEN

Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

17.
Gigascience ; 5: 14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26998258

RESUMEN

Systems biology promises to revolutionize medicine, yet human wellbeing is also inherently linked to healthy societies and environments (sustainability). The IDEA Consortium is a systems ecology open science initiative to conduct the basic scientific research needed to build use-oriented simulations (avatars) of entire social-ecological systems. Islands are the most scientifically tractable places for these studies and we begin with one of the best known: Moorea, French Polynesia. The Moorea IDEA will be a sustainability simulator modeling links and feedbacks between climate, environment, biodiversity, and human activities across a coupled marine-terrestrial landscape. As a model system, the resulting knowledge and tools will improve our ability to predict human and natural change on Moorea and elsewhere at scales relevant to management/conservation actions.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecología/métodos , Ecosistema , Modelos Teóricos , Clima , Conservación de los Recursos Naturales/tendencias , Ecología/tendencias , Predicción , Actividades Humanas , Humanos , Islas , Polinesia
18.
Environ Microbiol ; 18(4): 1122-36, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26487573

RESUMEN

Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2 -saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications.


Asunto(s)
Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Ecosistema , Respiraderos Hidrotermales/microbiología , Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Secuencia de Bases , Geología , Metagenómica , ARN Ribosómico 16S/genética , Temperatura
19.
G3 (Bethesda) ; 6(3): 509-19, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26715088

RESUMEN

Common pandora (Pagellus erythrinus) is a benthopelagic marine fish belonging to the teleost family Sparidae, and a newly recruited species in Mediterranean aquaculture. The paucity of genetic information relating to sparids, despite their growing economic value for aquaculture, provides the impetus for exploring the genomics of this fish group. Genomic tool development, such as genetic linkage maps provision, lays the groundwork for linking genotype to phenotype, allowing fine-mapping of loci responsible for beneficial traits. In this study, we applied ddRAD methodology to identify polymorphic markers in a full-sib family of common pandora. Employing the Illumina MiSeq platform, we sampled and sequenced a size-selected genomic fraction of 99 individuals, which led to the identification of 920 polymorphic loci. Downstream mapping analysis resulted in the construction of 24 robust linkage groups, corresponding to the karyotype of the species. The common pandora linkage map showed varying degrees of conserved synteny with four other teleost genomes, namely the European seabass (Dicentrarchus labrax), Nile tilapia (Oreochromis niloticus), stickleback (Gasterosteus aculeatus), and medaka (Oryzias latipes), suggesting a conserved genomic evolution in Sparidae. Our work exploits the possibilities of genotyping by sequencing to gain novel insights into genome structure and evolution. Such information will boost the study of cultured species and will set the foundation for a deeper understanding of the complex evolutionary history of teleosts.


Asunto(s)
Mapeo Cromosómico , Peces/genética , Ligamiento Genético , Genoma , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Evolución Biológica , Peces/clasificación , Sitios Genéticos , Genómica/métodos , Filogenia
20.
Mar Genomics ; 18 Pt A: 77-82, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25307204

RESUMEN

An updated second linkage map was constructed for the gilthead sea bream, Sparus aurata L., a fish species of great economic importance for the Mediterranean aquaculture industry. In contrast to the first linkage map which mainly consisted of genomic microsatellites (SSRs), the new linkage map is highly enriched with SSRs found in Expressed Sequence Tags (EST-SSRs), which greatly facilitates comparative mapping with other teleosts. The new map consists of 321 genetic markers in 27 linkage groups (LGs): 232 genomic microsatellites, 85 EST-SSRs and 4 SNPs; of those, 13 markers were linked to LGs but were not ordered. Eleven markers (5 SSRs, 5 EST-SSRs and 1 SNP) are not assigned to any LG. The total length of the sex-averaged map is 1769.7cM, 42% longer than the previously published one, and the number of markers in each LG ranges from 2 to 30. The inter-marker distance varies from 0 to 75.6cM, with an average of 5.75cM. The male and female maps have a length of 1349.2 and 2172.1cM, respectively, and the average distance between markers is 4.38 and 7.05cM, respectively. Comparative mapping with the three-spined stickleback (Gasterosteus acuulatus) chromosomes and scaffolds showed conserved synteny with 132 S. aurata markers (42.9% of those mapped) having a hit on the stickleback genome.


Asunto(s)
Mapeo Cromosómico , Dorada/genética , Animales , Femenino , Ligamiento Genético , Marcadores Genéticos/genética , Masculino , Smegmamorpha/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA