Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
AoB Plants ; 16(3): plae026, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840783

RESUMEN

Abstract. The study of ecological stability continues to fill the pages of scientific journals almost seven decades after the first ecologists initiated this line of research. The many advances in this field have focused on understanding the stability of populations, communities or functions within single guilds or trophic levels, with less research conducted across multiple trophic levels and considering the different interactions that relate species to each other. Here, we review the recent literature on the multiple dimensions of ecological stability specifically within plant-pollinator communities. We then focus on one of stability´s dimensions, temporal invariability, and adapt an existing partitioning framework that bridges invariability and synchrony measures across spatial scales and organizational levels to accommodate interactions between plants and their pollinators. Finally, we use this framework to analyse temporal invariability in plant reproductive success, partitioning it on invariability and synchrony components across plant and pollinator populations and communities, as well as their interactions, using a well-resolved dataset that encompasses data for two years. Our review of the literature points to several significant gaps in our current knowledge, with simulation studies clearly overrepresented in the literature as opposed to experimental or empirical approaches. Our quantitative approach to partitioning invariability shows similar patterns of decreasing temporal invariability across increasing organizational levels driven by asynchronous dynamics amongst populations and communities, which overall stabilize ecosystem functioning (plant reproductive success). This study represents a first step towards a better comprehension of temporal invariability in ecosystem functions defined by interactions between species and provides a blueprint for the type of spatially replicated multi-year data that needs to be collected in the future to further our understanding of ecological stability within multi-trophic communities.

3.
Conserv Biol ; : e14206, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855172

RESUMEN

Forest fragmentation is a grave threat to biodiversity. Forests are becoming increasingly fragmented with more than 70% now < 1 km from forest edge. Although much is known about the effects of forest fragmentation on individual species, much less is understood about its effects on species interactions (i.e., mutualisms, antagonisms, etc.). In 2014, a previous meta-analysis assessed the impacts of forest fragmentation on different species interactions, across 82 studies. We pooled the previous data with data published in the last 10 years (combined total 104 studies and 168 effect sizes). We compared the new set of publications (22 studies and 32 effect sizes) with the old set to evaluate potential changes in species interactions over time given the global increase in fragmentation rates. Mutualisms were more negatively affected by forest fragmentation than antagonisms (p < 0.0001). Edge effects, fragment size, and degradation negatively affected mutualisms, but not antagonisms, a different finding from the original meta-analysis. Parasitic interactions increased as fragment size decreased (p < 0.0001)-an intriguing result at variance with earlier studies. New publications showed a more negative mean effect size of forest fragmentation on mutualisms than old publications. Although research is still limited for some interactions, we identified an important scientific trend: current research tends to focus on antagonisms. We concluded that forest fragmentation disrupts important species interactions and that this disruption has increased over time.


Metaanálisis Mundial del Impacto de la Fragmentación de Bosques sobre el Mutualismo y Antagonismo Biótico Resumen La fragmentación del bosque es una amenaza grave para la biodiversidad. Los bosques están más fragmentados, pues más del 70% tienen < 1 km a partir del borde del bosque. Aunque hay mucha información del efecto de la fragmentación sobre las especies, hay poco conocimiento de sus efectos sobre las interacciones entre especies (mutualismo, antagonismo, etc.). Un metaanálisis realizado en 2014 por evaluó en 82 estudios el impacto de la fragmentación del bosque sobre las diferentes interacciones entre especies. Juntamos estos datos con datos publicados en los últimos diez años (total combinado de 104 estudios y 168 tamaños de efecto). Comparamos el grupo nuevo de publicaciones (22 estudios y 32 tamaños de efecto) con el grupo de para evaluar los cambios potenciales en las interacciones entre especies con el tiempo dado el incremento mundial de la tasa de fragmentación. El mutualismo fue más afectado negativamente por la fragmentación del bosque que los antagonismos (p < 0.0001). El efecto del borde, tamaño del fragmento y la degradación tuvieron un efecto negativo sobre el mutualismo, pero no sobre el antagonismo, un resultado diferente al del metaanálisis original. Las interacciones parasitarias incrementaron conforme se redujo el tamaño del fragmento (p < 0.0001)-un resultado intrigante en discrepancia con los primeros resultados. Las publicaciones recientes mostraron un tamaño promedio de efecto de la fragmentación del bosque más negativo para el mutualismo que las publicaciones antiguas. Aunque hay poca investigación sobre algunas interacciones, identificamos una tendencia científica importante: la investigación actual tiende a enfocarse en los antagonismos. Concluimos que la fragmentación del bosque altera las interacciones importantes entre especies y que este cambio ha aumentado con el tiempo.

4.
J Anim Ecol ; 92(2): 229-231, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36751039

RESUMEN

Research Highlight: Ogilvie, J. E., & CaraDonna, P. J. (2022). The shifting importance of abiotic and biotic factors across the life cycles of wild pollinators. Journal of Animal Ecology, 91, 2412-2423. https://doi.org/10.1111/1365-2656.13825. As global change and its multiple impacts continue to unfold across most of the planet, understanding how populations of wild species respond to changing conditions has become a major focus of ecological studies. Ogilvie and CaraDonna (Ogilvie & CaraDonna, 2022) focus on understanding how biotic and abiotic conditions affect bumblebee abundances. A major advance in their work is that, rather than focusing on a single measure of abundance at a particular life stage for each of the seven bumblebee species they survey (e.g. adult abundance), they focus on understanding the drivers of population abundance across the different stages of the species' life cycles. The authors specifically assess how three factors in particular, climate conditions, floral resource availability and previous life-stage abundances impact these abundances. A main finding in their study is that each of these three factors directly impacted a different life stage, showing that just focusing on a single life-stage would have resulted on a biased and incomplete picture of how abiotic and biotic factors affect bumblebee population dynamics. Studies like this one emphasize the need to focus on understanding the demographic mechanisms that determine population abundances.


Asunto(s)
Clima , Ecología , Animales , Abejas , Estadios del Ciclo de Vida , Dinámica Poblacional , Cambio Climático , Ecosistema
5.
Ecology ; 103(3): e3614, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34921678

RESUMEN

Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open, and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e., berry mass, number of fruits, and fruit density [kg/ha], among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), North America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-2005 (21 studies), 2006-2010 (40), 2011-2015 (88), and 2016-2020 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA).


Asunto(s)
Ecosistema , Polinización , Animales , Abejas , Productos Agrícolas , Flores , Insectos
6.
Proc Biol Sci ; 287(1930): 20200649, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32605514

RESUMEN

Predicting how communities re-arrange in response to changes in species composition remains a key challenge in ecology. Migratory species, which enter and leave communities across latitudinal gradients, offer us a unique opportunity to evaluate community- and species-level responses to a shift in community composition. We focused on a migratory hummingbird and the communities that host it along a latitudinal and species diversity gradient. Our results show higher niche overlap in more diverse communities, allowing resident species to compensate for the loss of the migrant in providing pollination services. Contrastingly, in less diverse communities, the migrant behaves as a specialist, monopolizing abundant resources. In its absence, its role is not fully covered by resident species, resulting in a decrease in the fruit set of the migrant's preferred plant species. These results help us understand the potential impacts of biodiversity loss and have important implications for community persistence given expected changes in the migratory behaviours of some species.


Asunto(s)
Migración Animal , Polinización , Animales , Biodiversidad , Aves , Ecología , Ecosistema , Flores , Frutas , Plantas
7.
Sci Total Environ ; 650(Pt 2): 2325-2336, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30292124

RESUMEN

Scientists, stakeholders and decision makers face trade-offs between adopting simple or complex approaches when modeling ecosystem services (ES). Complex approaches may be time- and data-intensive, making them more challenging to implement and difficult to scale, but can produce more accurate and locally specific results. In contrast, simple approaches allow for faster assessments but may sacrifice accuracy and credibility. The ARtificial Intelligence for Ecosystem Services (ARIES) modeling platform has endeavored to provide a spectrum of simple to complex ES models that are readily accessible to a broad range of users. In this paper, we describe a series of five "Tier 1" ES models that users can run anywhere in the world with no user input, while offering the option to easily customize models with context-specific data and parameters. This approach enables rapid ES quantification, as models are automatically adapted to the application context. We provide examples of customized ES assessments at three locations on different continents and demonstrate the use of ARIES' spatial multi-criteria analysis module, which enables spatial prioritization of ES for different beneficiary groups. The models described here use publicly available global- and continental-scale data as defaults. Advanced users can modify data input requirements, model parameters or entire model structures to capitalize on high-resolution data and context-specific model formulations. Data and methods contributed by the research community become part of a growing knowledge base, enabling faster and better ES assessment for users worldwide. By engaging with the ES modeling community to further develop and customize these models based on user needs, spatiotemporal contexts, and scale(s) of analysis, we aim to cover the full arc from simple to complex assessments, minimizing the additional cost to the user when increased complexity and accuracy are needed.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Modelos Biológicos , Análisis Espacial
8.
Sci Total Environ ; 654: 763-777, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448667

RESUMEN

Large river-floodplain systems are hotspots of biodiversity and ecosystem services but are also used for multiple human activities, making them one of the most threatened ecosystems worldwide. There is wide evidence that reconnecting river channels with their floodplains is an effective measure to increase their multi-functionality, i.e., ecological integrity, habitats for multiple species and the multiple functions and services of river-floodplain systems, although, the selection of promising sites for restoration projects can be a demanding task. In the case of the Danube River in Europe, planning and implementation of restoration projects is substantially hampered by the complexity and heterogeneity of the environmental problems, lack of data and strong differences in socio-economic conditions as well as inconsistencies in legislation related to river management. We take a quantitative approach based on best-available data to assess biodiversity using selected species and three ecosystem services (flood regulation, crop pollination, and recreation), focused on the navigable main stem of the Danube River and its floodplains. We spatially prioritize river-floodplain segments for conservation and restoration based on (1) multi-functionality related to biodiversity and ecosystem services, (2) availability of remaining semi-natural areas and (3) reversibility as it relates to multiple human activities (e.g. flood protection, hydropower and navigation). Our approach can thus serve as a strategic planning tool for the Danube and provide a method for similar analyses in other large river-floodplain systems.

9.
Sci Total Environ ; 656: 797-807, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30530149

RESUMEN

Freshwater biodiversity is declining, despite national and international efforts to manage and protect freshwater ecosystems. Ecosystem-based management (EBM) has been proposed as an approach that could more efficiently and adaptively balance ecological and societal needs. However, this raises the question of how social and ecological objectives can be included in an integrated management plan. Here, we present a generic model-coupling framework tailored to address this question for freshwater ecosystems, using three components: biodiversity, ecosystem services (ESS), and a spatial prioritisation that aims to balance the spatial representation of biodiversity and ESS supply and demand. We illustrate this model-coupling approach within the Danube River Basin using the spatially explicit, potential distribution of (i) 85 fish species as a surrogate for biodiversity as modelled using hierarchical Bayesian models, and (ii) four estimated ESS layers produced by the Artificial Intelligence for Ecosystem Services (ARIES) platform (with ESS supply defined as carbon storage and flood regulation, and demand specified as recreation and water use). These are then used for (iii) a joint spatial prioritisation of biodiversity and ESS employing Marxan with Zones, laying out the spatial representation of multiple management zones. Given the transboundary setting of the Danube River Basin, we also run comparative analyses including the country-level purchasing power parity (PPP)-adjusted gross domestic product (GDP) and each country's percent cover of the total basin area as potential cost factors, illustrating a scheme for balancing the share of establishing specific zones among countries. We demonstrate how emphasizing various biodiversity or ESS targets in an EBM model-coupling framework can be used to cost-effectively test various spatially explicit management options across a multi-national case study. We further discuss possible limitations, future developments, and requirements for effectively managing a balance between biodiversity and ESS supply and demand in freshwater ecosystems.


Asunto(s)
Organismos Acuáticos , Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Capital Social , Medio Social , Teorema de Bayes , Europa (Continente)
10.
Ecol Evol ; 8(8): 4237-4251, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721294

RESUMEN

Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.

11.
Conserv Biol ; 32(1): 127-134, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28639356

RESUMEN

To contribute to the aspirations of recent international biodiversity conventions, protected areas (PAs) must be strategically located and not simply established on economically marginal lands as they have in the past. With refined international commitments under the Convention on Biological Diversity to target protected areas in places of "importance to biodiversity," perhaps they may now be. We analyzed location biases in PAs globally over historic (pre-2004) and recent periods. Specifically, we examined whether the location of protected areas are more closely associated with high concentrations of threatened vertebrate species or with areas of low agricultural opportunity costs. We found that both old and new protected areas did not target places with high concentrations of threatened vertebrate species. Instead, they appeared to be established in locations that minimize conflict with agriculturally suitable lands. This entrenchment of past trends has substantial implications for the contributions these protected areas are making to international commitments to conserve biodiversity. If protected-area growth from 2004 to 2014 had strategically targeted unrepresented threatened vertebrates, >30 times more species (3086 or 2553 potential vs. 85 actual new species represented) would have been protected for the same area or the same cost as the actual expansion. With the land available for conservation declining, nations must urgently focus new protection on places that provide for the conservation outcomes outlined in international treaties.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Sesgo , Especies en Peligro de Extinción , Vertebrados
12.
Nat Ecol Evol ; 1(9): 1299-1307, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29046536

RESUMEN

During the past decades, managed honeybee stocks have increased globally. Managed honeybees are particularly used within mass-flowering crops and often spill over to adjacent natural habitats after crop blooming. Here, we uniquely show the simultaneous impact that honeybee spillover has on wild plant and animal communities in flower-rich woodlands via changes in plant-pollinator network structure that translate into a direct negative effect on the reproductive success of a dominant wild plant. Honeybee spillover leads to a re-assembly of plant-pollinator interactions through increased competition with other pollinator species. Moreover, honeybee preference for the most abundant plant species reduces its seed set, driven by high honeybee visitation rates that prevent pollen tube growth. Our study therefore calls for an adequate understanding of the trade-offs between providing pollination services to crops and the effects that managed pollinators might have on wild plants and pollinators.


Asunto(s)
Abejas/fisiología , Citrus sinensis , Fenómenos Fisiológicos de las Plantas , Polinización , Animales , Citrus sinensis/crecimiento & desarrollo , Dieta , Conducta Alimentaria , Reproducción , España
13.
Sci Rep ; 7(1): 6071, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28729670

RESUMEN

Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.


Asunto(s)
Calamus , Bosques , Bosque Lluvioso , Clima Tropical , Conservación de los Recursos Naturales , Demografía , Ecosistema , Ambiente
14.
Nat Commun ; 7: 12558, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27552116

RESUMEN

Human pressures on the environment are changing spatially and temporally, with profound implications for the planet's biodiversity and human economies. Here we use recently available data on infrastructure, land cover and human access into natural areas to construct a globally standardized measure of the cumulative human footprint on the terrestrial environment at 1 km(2) resolution from 1993 to 2009. We note that while the human population has increased by 23% and the world economy has grown 153%, the human footprint has increased by just 9%. Still, 75% the planet's land surface is experiencing measurable human pressures. Moreover, pressures are perversely intense, widespread and rapidly intensifying in places with high biodiversity. Encouragingly, we discover decreases in environmental pressures in the wealthiest countries and those with strong control of corruption. Clearly the human footprint on Earth is changing, yet there are still opportunities for conservation gains.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Internacionalidad , Agricultura , Geografía , Humanos , Renta , Presión , Factores Socioeconómicos
15.
Sci Data ; 3: 160067, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27552448

RESUMEN

Remotely-sensed and bottom-up survey information were compiled on eight variables measuring the direct and indirect human pressures on the environment globally in 1993 and 2009. This represents not only the most current information of its type, but also the first temporally-consistent set of Human Footprint maps. Data on human pressures were acquired or developed for: 1) built environments, 2) population density, 3) electric infrastructure, 4) crop lands, 5) pasture lands, 6) roads, 7) railways, and 8) navigable waterways. Pressures were then overlaid to create the standardized Human Footprint maps for all non-Antarctic land areas. A validation analysis using scored pressures from 3114×1 km(2) random sample plots revealed strong agreement with the Human Footprint maps. We anticipate that the Human Footprint maps will find a range of uses as proxies for human disturbance of natural systems. The updated maps should provide an increased understanding of the human pressures that drive macro-ecological patterns, as well as for tracking environmental change and informing conservation science and application.

16.
Proc Biol Sci ; 283(1826): 20153008, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26936241

RESUMEN

Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'.


Asunto(s)
Biodiversidad , Agricultura Forestal , Bosques , Árboles/fisiología , Borneo , Malasia , Clima Tropical
17.
PLoS One ; 10(7): e0133071, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26177201

RESUMEN

Coffee is highly sensitive to temperature and rainfall, making its cultivation vulnerable to geographic shifts in response to a changing climate. This could lead to the establishment of coffee plantations in new areas and potential conflicts with other land covers including natural forest, with consequent implications for biodiversity and ecosystem services. We project areas suitable for future coffee cultivation based on several climate scenarios and expected responses of the coffee berry borer, a principle pest of coffee crops. We show that the global climatically-suitable area will suffer marked shifts from some current major centres of cultivation. Most areas will be suited to Robusta coffee, demand for which could be met without incurring forest encroachment. The cultivation of Arabica, which represents 70% of consumed coffee, can also be accommodated in the future, but only by incurring some natural forest loss. This has corresponding implications for carbon storage, and is likely to affect areas currently designated as priority areas for biodiversity. Where Arabica coffee does encroach on natural forests, we project average local losses of 35% of threatened vertebrate species. The interaction of climate and coffee berry borer greatly influences projected outcomes.


Asunto(s)
Agricultura/tendencias , Carbono/química , Coffea/crecimiento & desarrollo , Escarabajos/fisiología , Modelos Estadísticos , Árboles/crecimiento & desarrollo , África , Animales , Asia , Biodiversidad , Cambio Climático , Coffea/parasitología , Ecosistema , Bosques , Humanos , Dinámica Poblacional , América del Sur , Árboles/parasitología
18.
Glob Chang Biol ; 21(9): 3455-68, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25832015

RESUMEN

Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon-based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above-ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red-listed species. We found that increasing fragment size has a positive relationship with above-ground carbon stock and with abundance of IUCN Red-listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red-listed species abundance. These resulted in positive congruence between carbon stocks and Red-listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer-grained assessments in fragmented landscapes rather than using averaged coarse-grained cells.


Asunto(s)
Biodiversidad , Secuestro de Carbono , Conservación de los Recursos Naturales , Bosque Lluvioso , Brasil , Modelos Biológicos , Clima Tropical
19.
Ecology ; 95(6): 1604-11, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25039224

RESUMEN

Lianas (climbing woody vines) are important structural parasites of tropical trees and may be increasing in abundance in response to global-change drivers. We assessed long-term (-14-year) changes in liana abundance and forest dynamics within 36 1-ha permanent plots spanning -600 km2 of undisturbed rainforest in central Amazonia. Within each plot, we counted each liana stem (> or = 2 cm diameter) and measured its diameter at 1.3 m height, and then used these data to estimate liana aboveground biomass. An initial liana survey was completed in 1997-1999 and then repeated in 2012, using identical methods. Liana abundance in the plots increased by an average of 1.00% +/- 0.88% per year, leading to a highly significant (t = 6.58, df = 35, P < 0.00001) increase in liana stem numbers. Liana biomass rose more slowly over time (0.32% +/- 1.37% per year) and the mean difference between the two sampling intervals was nonsignificant (t = 1.46, df = 35, P = 0.15; paired t tests). Liana size distributions shifted significantly (chi2 = 191, df = 8, P < 0.0001; Chi-square test for independence) between censuses, mainly as a result of a nearly 40% increase in the number of smaller (2-3 cm diameter) lianas, suggesting that lianas recruited rapidly during the study. We used long-term data on rainfall and forest dynamics from our study site to test hypotheses about potential drivers of change in liana communities. Lianas generally increase with rainfall seasonality, but we found no significant trends over time (1997-2012) in five rainfall parameters (total annual rainfall, dry-season rainfall, wet-season rainfall, number of very dry months, CV of monthly rainfall). However, rates of tree mortality and recruitment have increased significantly over time in our plots, and general linear mixed-effect models suggested that lianas were more abundant at sites with higher tree mortality and flatter topography. Rising concentrations of atmospheric CO2, which may stimulate liana growth, might also have promoted liana increases. Our findings clearly support the view that lianas are increasing in abundance in old-growth tropical forests, possibly in response to accelerating forest dynamics and rising CO2 concentrations. The aboveground biomass of trees was lowest in plots with abundant lianas, suggesting that lianas could reduce forest carbon storage and potentially alter forest dynamics if they continue to proliferate.


Asunto(s)
Ecosistema , Plantas/clasificación , Árboles , Animales , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Densidad de Población , Factores de Tiempo
20.
Conserv Biol ; 28(5): 1342-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24725007

RESUMEN

Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta-analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States).


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Plantas , Simbiosis , Animales , Cadena Alimentaria , Polinización , Dispersión de Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA