Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Technology (Singap World Sci) ; 6(2): 67-74, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30519598

RESUMEN

Allergic contact dermatitis (ACD) is an inflammatory disease that impacts 15-20% of the general population and accurate screening methods for chemical risk assessment are needed. However, most approaches poorly predict pre- and pro-hapten sensitizers, which require abiotic or metabolic conversion prior to inducing sensitization. We developed a tri-culture system comprised of MUTZ-3-derived Langerhans cells, HaCaT keratinocytes, and primary dermal fibroblasts to mimic the cellular and metabolic environments of skin sensitization. A panel of non-sensitizers and sensitizers was tested and the secretome was evaluated. A support vector machine (SVM) was used to identify the most predictive sensitization signature and classification trees identified statistical thresholds to predict sensitizer potency. The SVM computed 91% tri-culture prediction accuracy using the top 3 ranking biomarkers (IL-8, MIP-1ß, and GM-CSF) and improved the detection of pre- and pro-haptens. This in vitro assay combined with in silico data analysis presents a promising approach and offers the possibility of multi-metric analysis for enhanced ACD sensitizer screening.

2.
Adv Wound Care (New Rochelle) ; 6(1): 10-22, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28116224

RESUMEN

Objective: In previous work, we demonstrated the development of a novel fusion protein containing stromal cell-derived growth factor-1 alpha juxtaposed to an elastin-like peptide (SDF1-ELP), which has similar bioactivity, but is more stable in elastase than SDF1. Herein, we compare the ability of a single topical application of SDF1-ELP to that of SDF1 in healing 1 × 1 cm excisional wounds in diabetic mice. Approach: Human Leukemia-60 cells were used to demonstrate the chemotactic potential of SDF1-ELP versus SDF1 in vitro. Human umbilical vascular endothelial cells were used to demonstrate the angiogenic potential of SDF1-ELP versus SDF1 in vitro. The bioactivity of SDF1-ELP versus SDF1 after incubation in ex-vivo diabetic wound fluid was compared. The in-vivo effectiveness of SDF1-ELP versus SDF1 was compared in diabetic mice wound model by monitoring for the number of CD31+ cells in harvested wound tissues. Results: SDF1-ELP promotes the migration of cells and induces vascularization similar to SDF1 in vitro. SDF1-ELP is more stable in wound fluids compared to SDF1. In vivo, SDF1-ELP induced a higher number of vascular endothelial cells (CD31+ cells) compared to SDF1 and other controls, suggesting increased vascularization. Innovation: While growth factors have been shown to improve wound healing, this strategy is largely ineffective in chronic wounds. In this work, we show that SDF1-ELP is a promising agent for the treatment of chronic skin wounds. Conclusion: The superior in vivo performance and stability of SDF1-ELP makes it a promising agent for the treatment of chronic skin wounds.

3.
Rep U S ; 2016: 514-520, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28239509

RESUMEN

Diagnostic blood testing is the most prevalent medical procedure performed in the world and forms the cornerstone of modern health care delivery. Yet blood tests are still predominantly carried out in centralized labs using large-volume samples acquired by manual venipuncture, and no end-to-end solution from blood draw to sample analysis exists today. Our group is developing a platform device that merges robotic phlebotomy with automated diagnostics to rapidly deliver patient information at the site of the blood draw. The system couples an image-guided venipuncture robot, designed to address the challenges of routine venous access, with a centrifuge-based blood analyzer to obtain quantitative measurements of hematology. In this paper, we first present the system design and architecture of the integrated device. We then perform a series of in vitro experiments to evaluate the cannulation accuracy of the system on blood vessel phantoms. Next, we assess the effects of vessel diameter, needle gauge, flow rate, and viscosity on the rate of sample collection. Finally, we demonstrate proof-of-concept of a white cell assay on the blood analyzer using in vitro human samples spiked with fluorescently labeled microbeads.

4.
Lab Chip ; 15(15): 3211-21, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26130452

RESUMEN

Immunoassays are widely utilized due to their ability to quantify a vast assortment of biomolecules relevant to biological research and clinical diagnostics. Recently, immunoassay capabilities have been improved by the development of multiplex assays that simultaneously measure multiple analytes in a single sample. However, these assays are hindered by high costs of reagents and relatively large sample requirements. For example, in vitro screening systems currently dedicate individual wells to each time point of interest and this limitation is amplified in screening studies when the investigation of many experimental conditions is necessary; resulting in large volumes for analysis, a correspondingly high cost and a limited temporal experimental design. Microfluidics based immunoassays have been developed in order to overcome these drawbacks. Together, previous studies have demonstrated on-chip assays with either a large dynamic range, high performance sensitivity, and/or the ability to process samples in parallel on a single chip. In this report, we develop a multiplex immunoassay possessing all of these parallel characteristics using commercially available reagents, which allows the analytes of interest to be easily changed. The device presented can measure 6 proteins in 32 samples simultaneously using only 4.2 µL of sample volume. High quality standard curves are generated for all 6 analytes included in the analysis, and spiked samples are quantified throughout the working range of the assay. In addition, we demonstrate a strong correlation (R(2) = 0.8999) between in vitro supernatant measurements using our device and those obtained from a bench-top multiplex immunoassay. Finally, we describe cytokine secretion in an in vitro inflammatory hippocampus culture system, establishing proof-of-concept of the ability to use this platform as an in vitro screening tool. The low-volume, multiplexing abilities of the microdevice described in this report could be broadly applied to numerous situations where sample volumes and costs are limiting.


Asunto(s)
Inmunoensayo/métodos , Técnicas Analíticas Microfluídicas/métodos , Animales , Línea Celular , Técnicas de Cocultivo/instrumentación , Técnicas de Cocultivo/métodos , Diseño de Equipo , Hipocampo/química , Humanos , Inmunoensayo/instrumentación , Células Madre Mesenquimatosas , Técnicas Analíticas Microfluídicas/instrumentación , Proteínas/análisis , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
5.
Microfluid Nanofluidics ; 18(2): 199-214, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25691853

RESUMEN

Immunoassays are one of the most versatile and widely performed biochemical assays and, given their selectivity and specificity, are used in both clinical and research settings. However, the high cost of reagents and relatively large sample volumes constrain the integration of immunoassays into many applications. Scaling the assay down within microfluidic devices can alleviate issues associated with reagent and sample consumption. However, in many cases a new device is designed and empirically optimized for each specific analyte, a costly and time consuming approach. In this paper, we report the development of a microfluidic bead-based immunoassay which, using antibody coated microbeads, can potentially detect any analyte or combination of analytes for which antibody coated microbeads can be generated. We also developed a computational reaction model and optimization algorithm that can be used to optimize the device for any analyte. We applied this technique to develop a low volume IL-6 immunoassay with high sensitivity (358 fM, 10 pg/mL) and a large dynamic range (4 orders of magnitude). This device design and optimization technique can be used to design assays for any protein with an available antibody and can be used with a large number of applications including biomarker discovery, temporal in vitro studies using a reduced number of cells and reagents, and analysis of scarce biological samples in animal studies and clinical research settings.

6.
Toxicol In Vitro ; 28(8): 1413-23, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25025180

RESUMEN

To assess the public's propensity for allergic contact dermatitis (ACD), many alternatives to in vivo chemical screening have been developed which generally incorporate a small panel of cell surface and secreted dendritic cell biomarkers. However, given the underlying complexity of ACD, one cell type and limited cellular metrics may be insufficient to predict contact sensitizers accurately. To identify a molecular signature that can further characterize sensitization, we developed a novel system using RealSkin, a full thickness skin equivalent, in co-culture with MUTZ-3 derived Langerhan's cells. This system was used to distinguish a model moderate pro-hapten isoeugenol (IE) and a model strong pre-hapten p-phenylenediamine (PPD) from irritant, salicylic acid (SA). Commonly evaluated metrics such as CD86, CD54, and IL-8 secretion were assessed, in concert with a 27-cytokine multi-plex screen and a functional chemotaxis assay. Data were analyzed with feature selection methods using ANOVA, hierarchical cluster analysis, and a support vector machine to identify the best molecular signature for sensitization. A panel consisting of IL-12, IL-9, VEGF, and IFN-γ predicted sensitization with over 90% accuracy using this co-culture system analysis. Thus, a multi-metric approach that has the potential to identify a molecular signature may be more predictive of contact sensitization.


Asunto(s)
Pruebas de Irritación de la Piel/métodos , Máquina de Vectores de Soporte , Adulto , Antígeno B7-2/análisis , Línea Celular , Análisis por Conglomerados , Humanos , Molécula 1 de Adhesión Intercelular/análisis , Interleucina-8/metabolismo
7.
J Hepatol ; 59(6): 1307-14, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23872604

RESUMEN

BACKGROUND & AIMS: A common cause of liver donor ineligibility is macrosteatosis. Recovery of such livers could enhance donor availability. Living donor studies have shown diet-induced reduction of macrosteatosis enables transplantation. However, cadaveric liver macrosteatotic reduction must be performed ex vivo within hours. Towards this goal, we investigated the effect of accelerated macrosteatosis reduction on hepatocyte viability and function using a novel system of macrosteatotic hepatocytes. METHODS: Hepatocytes isolated from lean Zucker rats were cultured in a collagen sandwich, incubated for 6 days in fatty acid-supplemented medium to induce steatosis, and then switched for 2 days to medium supplemented with lipid metabolism promoting agents. Intracellular lipid droplet size distribution and triglyceride, viability, albumin and urea secretion, and bile canalicular function were measured. RESULTS: Fatty acid-supplemented medium induced microsteatosis in 3 days and macrosteatosis in 6 days, the latter evidenced by large lipid droplets dislocating the nucleus to the cell periphery. Macrosteatosis significantly impaired all functions tested. Macrosteatosis decreased upon returning hepatocytes to standard medium, and the rate of decrease was 4-fold faster with supplemented agents, yielding 80% reduction in 2 days. Viability of macrosteatosis reduced hepatocytes was similar to control lean cells. Accelerated macrosteatotic reduction led to faster recovery of urea secretion and bile canalicular function, but not of albumin secretion. CONCLUSIONS: Macrosteatosis reversibly decreases hepatocyte function and supplementary agents accelerate macrosteatosis reduction and some functional restoration with no effect on viability. This in vitro model may be useful to screen agents for macrosteatotic reduction in livers before transplantation.


Asunto(s)
Hígado Graso/etiología , Hepatocitos/fisiología , Animales , Supervivencia Celular , Células Cultivadas , Humanos , Masculino , Ratas , Ratas Zucker
8.
Technology (Singap World Sci) ; 1(1): 72-87, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26120592

RESUMEN

Venipuncture is pivotal to a wide range of clinical interventions and is consequently the leading cause of medical injury in the U.S. Complications associated with venipuncture are exacerbated in difficult settings, where the rate of success depends heavily on the patient's physiology and the practitioner's experience. In this paper, we describe a device that improves the accuracy and safety of the procedure by autonomously establishing a peripheral line for blood draws and IV's. The device combines a near-infrared imaging system, computer vision software, and a robotically driven needle within a portable shell. The device operates by imaging and mapping in real-time the 3D spatial coordinates of subcutaneous veins in order to direct the needle into a designated vein. We demonstrate proof of concept by assessing imaging performance in humans and cannulation accuracy on an advanced phlebotomy training model.

9.
RSC Adv ; 3(36): 16002-16010, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-29682279

RESUMEN

Dendritic cells are the principal antigen presenting cells that are responsible for acquiring and transporting antigen from the peripheral tissue to the secondary lymphoid tissue. There they present it to T cells which ultimately initiate an antigen specific immune response. In vivo, the migration of dendritic cells (DCs) and T cell activation are intimately linked. However, ex vivo systems that facilitate integrated evaluation of DC chemotaxis and resulting T cell activation by migrated DCs are lacking. In this work, we have developed a microfabricated platform that integrates DC chemotaxis with T cell activation. The basic design of the microdevice includes two layers of PDMS, with the top layer comprising the chemotaxis compartment and the bottom layer containing a T cell compartment. In the chemotaxis compartment, the DCs are subjected to a chemokine gradient, and their migratory response is evaluated. In the T cell compartment, rapid DC-induced activation of T cells is evaluated by measuring the level of calcium in T cells. We demonstrate the efficacy of our approach by evaluating the integrated response of mature DCs, whereby the overall T cell activation response is governed both by the chemotaxis and the T cell activation potential of mature DCs relative to immature DCs. Our system provides a powerful platform for systematically probing various aspects of antigen induced immune responses - DC maturation, migration and T cell activation - in an integrated fashion.

10.
Cell Mol Bioeng ; 5(1): 52-72, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24741377

RESUMEN

Skin sensitization remains a major environmental and occupational health hazard. Animal models have been used as the gold standard method of choice for estimating chemical sensitization potential. However, a growing international drive and consensus for minimizing animal usage have prompted the development of in vitro methods to assess chemical sensitivity. In this paper, we examine existing approaches including in silico models, cell and tissue based assays for distinguishing between sensitizers and irritants. The in silico approaches that have been discussed include Quantitative Structure Activity Relationships (QSAR) and QSAR based expert models that correlate chemical molecular structure with biological activity and mechanism based read-across models that incorporate compound electrophilicity. The cell and tissue based assays rely on an assortment of mono and co-culture cell systems in conjunction with 3D skin models. Given the complexity of allergen induced immune responses, and the limited ability of existing systems to capture the entire gamut of cellular and molecular events associated with these responses, we also introduce a microfabricated platform that can capture all the key steps involved in allergic contact sensitivity. Finally, we describe the development of an integrated testing strategy comprised of two or three tier systems for evaluating sensitization potential of chemicals.

11.
Tissue Eng Part C Methods ; 15(2): 297-306, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19196121

RESUMEN

The generation of a large number of fully functional hepatocytes from a renewable cell source can provide an unlimited resource for bioartificial liver devices and cell replacement therapies. We have established a directed differentiation system using sodium butyrate treatment to generate an enriched population of hepatocyte-like cells from embryonic stem cells. A metabolic analysis of the hepatocyte populations revealed glycolytic and mitochondrial phenotypes similar to mouse hepatoma cells, implying that these cells represent an immature hepatocyte phenotype. To mediate further differentiation, S-NitrosoAcetylPenicillamine (SNAP), a nitric oxide donor, was utilized to induce mitochondrial development in the precursor populations. A comparative analysis of the different treated populations showed that 500microM SNAP treatment resulted in the generation of an enriched population of metabolically mature hepatocyte-like cells with increased differentiated function. Specifically, 500microM SNAP treatment increased glucose consumption, lactate production rates, mitochondrial mass, and potential as compared to untreated populations. In addition, functional analysis revealed that intracellular albumin content, urea secretion rates, and cytochrome P450 7a1 promoter activity were increased in the treated population. The methodology described here to generate an enriched population of metabolically and functionally mature hepatocyte-like cells may have potential implications in drug discovery and regenerative medicine.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , S-Nitroso-N-Acetilpenicilamina/farmacología , Regulación hacia Arriba/efectos de los fármacos , Albúminas/metabolismo , Animales , Línea Celular , Colesterol 7-alfa-Hidroxilasa/genética , Hepatocitos/enzimología , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Cinética , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Regiones Promotoras Genéticas/genética
12.
J Surg Res ; 152(1): 3-17,17.e1-2, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18755477

RESUMEN

The inflammatory response initiated upon burn injury is also associated with extensive metabolic adjustments. While there is a significant body of literature on the characterization of these changes at the metabolite level, little is known on the mechanisms of induction, especially with respect to the role of gene expression. We have comprehensively analyzed changes in gene expression in rat livers during the first 7 d after 20% total body surface area burn injury using Affymetrix microarrays. A total of 740 genes were significantly altered in expression at 1, 2, 4, and 7 d after burn injury compared to sham-burn controls. Functional classification based on gene ontology terms indicated that metabolism, transport, signaling, and defense/inflammation response accounted for more than 70% of the significantly altered genes. Fisher least-significant difference post-hoc testing of the 740 differentially expressed genes indicated that over 60% of the genes demonstrated significant changes in expression either on d 1 or on d 7 postburn. The gene expression trends were corroborated by biochemical measurements of triglycerides and fatty acids 24 h postburn but not at later time points. This suggests that fatty acids are used, at least in part, in the liver as energy substrates for the first 4 d after injury. Our data also suggest that long-term regulation of energy substrate utilization in the liver following burn injury is primarily at the posttranscriptional level. Last, relevance networks of significantly expressed genes indicate the involvement of key small molecules in the hepatic response to 20% total body surface area burn injury.


Asunto(s)
Quemaduras/metabolismo , Perfilación de la Expresión Génica , Hígado/metabolismo , Animales , Ácidos Grasos no Esterificados/metabolismo , Expresión Génica , Inflamación/genética , Masculino , Metabolismo/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapeo de Interacción de Proteínas , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Factores de Tiempo , Triglicéridos/metabolismo
13.
Biotechnol Prog ; 24(5): 1132-41, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19194923

RESUMEN

The development of implantable engineered liver tissue constructs and ex vivo hepatocyte-based therapeutic devices are limited by an inadequate hepatocyte cell source. In our previous studies, embryoid body (EB)-mediated stem cell differentiation spontaneously yielded populations of hepatocyte lineage cells expressing mature hepatocyte markers such as albumin (ALB) and cytokeratin-18 (CK18). However, these cultures neither yielded a homogenous hepatocyte lineage population nor exhibited detoxification function typical of a more mature hepatocyte lineage cell. In this study, secondary culture configurations were used to study the effects of collagen sandwich culture and oncostatin-M (OSM) or S-nitroso-N-acetylpenicillamine (SNAP) supplementation of EB-derived hepatocyte-lineage cell function. Quantitative immunofluorescence and secreted protein analyses were used to provide insights into the long-term maintenance and augmentation of existing functions. The results of these studies suggest that SNAP, independent of the collagen supplementation, maintained the highest levels of ALB expression, however, mature liver-specific CK18 was only expressed in the presence of gel sandwich culture supplemented with SNAP. In addition, albumin secretion and cytochrome P450 detoxification studies indicated that this condition was the best for the augmentation of hepatocyte-like function. Maintenance and augmentation of hepatocyte-like cells isolated from heterogeneous EB cell populations will be a critical step in generating large numbers of functional differentiated cells for therapeutic use.


Asunto(s)
Colágeno/metabolismo , Células Madre Embrionarias/metabolismo , Hepatocitos/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Colágeno/química , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Células Madre Embrionarias/citología , Hepatocitos/citología , Humanos , Oncostatina M/química , Oncostatina M/metabolismo , S-Nitroso-N-Acetilpenicilamina/química
14.
Biotechnol Bioeng ; 98(3): 631-44, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17390383

RESUMEN

Integral to the development of embryonic stem cell therapeutic strategies for hepatic disorders is the identification and establishment of a controllable hepatic differentiation strategy. In order to address this issue we have established an alginate microencapsulation approach which provides a means to modulate the differentiation process through changes in key encapsulation parameters. We report that a wide array of hepatocyte specific markers is expressed by cells differentiated during a 23-day period within an alginate bead microenvironment. These include urea and albumin secretion, glycogen storage, and cytochrome P450 transcription factor activity. In addition, we demonstrate that cellular aggregation is integral to the control of differentiation within the bead environment and this process is mediated by the E-cadherin protein. The temporal expression of surface E-cadherin and hepatocyte functional expression occur concomitantly and both cellular aggregation and albumin synthesis are blocked in the presence of anti E-cadherin immunoglobulin. Furthermore, by establishing a compartmental model of differentiation, which incorporates this aggregation phenomenon, we can optimize key encapsulation parameters.


Asunto(s)
Alginatos/química , Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Hepatocitos/citología , Hepatocitos/fisiología , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Agregación Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas
15.
Tissue Eng ; 12(6): 1515-25, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16846348

RESUMEN

Pluripotent embryonic stem (ES) cells represent a promising renewable cell source for the generation of functional differentiated cells. Previous studies incorporating embryoid body (EB)-mediated stem cell differentiation have, either spontaneously or after growth factor and extracellular matrix protein supplementation, yielded populations of hepatocyte lineage cells expressing mature hepatocyte markers such as albumin (ALB). In an effort to promote ES cell commitment to the hepatocyte lineage, we have evaluated the effects of four culture conditions on albumin and gene expression in differentiating ES cells. Quantitative in situ immunofluorescence and cDNA microarray analyses were used to describe not only lineage specificity but also to provide insights into the effects of disparate culture environments on the mechanisms of differentiation. The results of these studies suggest that spontaneous and collagen-mediated differentiation induce cells with the highest levels of ALB expression but mature liver specific genes were only expressed in the spontaneous condition. Further analysis of gene expression profiles indicated that two distinct mechanisms may govern spontaneous and collagen-mediated differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Embrión de Mamíferos/citología , Perfilación de la Expresión Génica , Hepatocitos/fisiología , Células Madre/citología , Ingeniería de Tejidos , Proteínas de Fase Aguda/biosíntesis , Proteínas de Fase Aguda/genética , Animales , Células Cultivadas , Embrión de Mamíferos/fisiología , Perfilación de la Expresión Génica/métodos , Hepatocitos/citología , Ratones , Células Madre/fisiología
16.
Biotechnol Bioeng ; 93(3): 581-91, 2006 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-16345081

RESUMEN

The emergence of hepatocyte based clinical and pharmaceutical technologies, has been limited by the absence of a stable hepatocyte cell source. Embryonic stem cells may represent a potential solution to this cell source limitation problem since they are highly proliferative, renewable, and pluripotent. Although many investigators have described techniques to effectively differentiate stem cells into a variety of mature cell lineages, their practicality is limited by: (1) low yields of fully differentiated cells, (2) absence of large scale processing considerations, and (3) ineffective downstream enrichment protocols. Thus, a differentiation platform that may be modified to induce and sustain differentiated cell function and scaled to increase differentiated cell yield would improve current stem cell differentiation strategies. Microencapsulation provides a vehicle for the discrete control of key cell culture parameters such as the diffusion of growth factors, metabolites, and wastes. In addition, both cell seeding density and bead composition may be manipulated. In order to assess the feasibility of directing stem cell differentiation via microenvironment regulation, we have developed a murine embryonic stem cell (ES) alginate poly-l-lysine microencapsulation hepatocyte differentiation system. Our results indicate that the alginate microenvironment maintains cell viability, is conducive to ES cell differentiation, and maintains differentiated cellular function. This system may ultimately assist in developing scalable stem cell differentiation strategies.


Asunto(s)
Alginatos , Hepatocitos/citología , Polilisina/análogos & derivados , Células Madre/citología , Albúminas/metabolismo , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Supervivencia Celular , Embrión de Mamíferos/citología , Hepatocitos/metabolismo , Ratones , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...