Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 251: 112846, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237432

RESUMEN

Photodynamic therapy (PDT) is a clinically approved, non-invasive alternate cancer therapy. A synthetic glucocorticoid (GC), dexamethasone (Dex) has previously been demonstrated to sensitize cancer cells to chemotherapy. However, to the best of our knowledge, the sensitization effect of GCs on PDT has not yet been investigated. We hypothesized that glucocorticoid receptor (GR) targeting can selectively make cancer cells more sensitive to PDT treatment, as PDT induces hypoxia wherein GR-activity gets enhanced. In addition, Dex was reported to act against the PDT-induced cell survival pathways like HIF-1α, NRF2, NF-κB, STAT3 etc. Thus, both the treatments can complement each other and may result in increasing the effectiveness of combination therapy. Hence, in this study, we developed liposomal formulations of our previously reported PDT agent P-Nap, either alone (D1P-Nap) or in combination with Dex (D1XP-Nap) to elucidate the sensitization effect. Interestingly, our RT-PCR results in hypoxic conditions showed down-regulation of HIF-1α and over expression of GR-activated genes for glucose-6-phosphatase (G6Pase) and PEPCK enzymes, indicating prominent GR-transactivation. We also observed higher phototoxicity in CT26.WT cells treated with D1XP-Nap PDT under hypoxic conditions as compared to normoxic conditions. These effects were reversed when cells were pre-treated with RU486, a competitive inhibitor of GCs. Moreover, our in vivo findings of subcutaneous tumor model of Balb/C mice for colon cancer revealed a significant decrease in tumor volume as well as considerable enhancement in the survivability of PDT treated tumor-bearing mice when Dex was present in the formulation. A high Bax/Bcl-xL ratio, high p53 expression, enhanced E-cadherin expression and down-regulation of pro-tumorigenic transcription factors NF-κB and c-Myc were found in tumor lysates from mice treated with D1XP-Nap under PDT, indicating GR-mediated sensitization of the tumor to PDT-induced cell death and enhancement of life-span for tumor bearing mice.


Asunto(s)
Neoplasias del Colon , Fotoquimioterapia , Ratones , Animales , Receptores de Glucocorticoides/metabolismo , FN-kappa B , Muerte Celular , Neoplasias del Colon/tratamiento farmacológico , Línea Celular Tumoral
2.
Bioorg Chem ; 133: 106395, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36753964

RESUMEN

Breast cancer is a heterogeneous malignancy with wide-ranging variations in therapeutic responses, overall survival etc. Major challenges for available chemotherapeutic agents in achieving clinical success are in maintaining systemic bio-distribution and avoiding non-specific adverse effects. Bis-arylidene oxindoles are estrogen receptor (ER)-selective bioactive molecules with moderate potency. In here, we have designed, synthesized and evaluated a series of twin aliphatic chain cationic lipid-conjugated bis-arylidene oxindole molecules with variations in nature of linker, lengths of carbon spacer and hydrophobic twin chains. We observed that among the various structural analogues, C8 twin-chain containing molecules, PGC8, S2C8 and S3C8 showed effective cancer cell-selective cytotoxicity in different cancer cell lines with an IC50 ranging from 4 to 7 µM. These molecules selectively induced apoptosis, ROS production and cell cycle inhibition at G1/S phase in ER + breast cancer cells but not in non-cancer cells. Additionally, these molecules formed homogenous self-assemblies exhibiting effective hydrodynamic diameter with positive surface charge. The self-assemblies also showed prominent cancer cell-selective uptake and DNA-binding abilities. Hence, we have shown successful incorporation of dexamethasone to the self-assemblies, and its enhanced cytotoxicity even in ER-negative breast cancer cells. All these results indicate that PGC8, S2C8 and S3C8 molecules, albeit their potent and selective ER-positive anti-breast cancer activity, can be repurposed as targeted delivery systems and hold promise as unique, broader spectrum breast cancer cell-selective therapeutic payloads.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Oxindoles/farmacología , Oxindoles/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular , Puntos de Control del Ciclo Celular , Lípidos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral
3.
J Photochem Photobiol B ; 238: 112625, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36529058

RESUMEN

Photodynamic therapy (PDT) is a promising non-invasive treatment modality for cancer and can be potentiated by combination with chemotherapy. Here, we combined PDT of novel porphyrin-based photosensitizers with low dose doxorubicin (Dox) to get maximum outcome. Dox potentiated and showed synergism with PDT under in vitro conditions on CT26.WT cells. The current colon cancer treatment strategies assure partial or even complete tumour regression but loco-regional relapse or distant metastasis is the major cause of death despite combination therapy. The spared cells after the treatment contribute to relapse and it is important to study their behaviour in host environment. Hence, we developed relapse models for PDT, Dox and combination treatments by transplanting respectively treated equal number of live cells to mice (n = 5) for tumour formation. Most of the treated cells lost tumour forming ability, but some treatment resistant cells developed tumours in few mice. These tumours served as relapse models and Western blot analysis of tumour samples provided clinically relevant information to delineate resistance strategies of individual as well as combination therapies at molecular level. Our results showed that low dose Dox helped in increasing the tumour inhibiting effect of PDT in combination therapy, but still there are indeed possibilities of relapse at later stages due to chemoresistance and immune suppression that may occur post-treatment. We observed that the combination therapy may also lead to the development of multidrug resistant (MDR) phenotype during relapse. Thus, this study provided clinically relevant information to further strengthen and improve PDT-drug combination therapy in order to avoid relapse and to treat cancer more effectively.


Asunto(s)
Neoplasias del Colon , Fotoquimioterapia , Porfirinas , Ratones , Animales , Porfirinas/farmacología , Porfirinas/uso terapéutico , Fotoquimioterapia/métodos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Línea Celular Tumoral
4.
ACS Macro Lett ; 11(3): 289-295, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35575367

RESUMEN

Targeted delivery of therapeutics such as small molecule drugs or nucleic acids exclusively to the nucleus of diseased mammalian cells poses a significant challenge. The development of targeting ligands that can specifically enter certain cancer cells via a specific receptor-mediated endocytosis and then traffic exclusively to the nucleus to deliver the cargo inside it can achieve this goal. We have developed an end-functionalized shikimoylated-polypeptide with pendant shikimoyl moieties that can enter mammalian cells via the mannose receptors and are then exclusively trafficked into the nucleus. The presence of the shikimoyl group in the polypeptide, which traffics it exclusively to the nucleus, contrasts with the mannosylated or galactosylated glycopolypeptides that are distributed all over the cytoplasm or the mannose-6-phosphate containing polypeptide that is exclusively trafficked to the lysosome. Using challenge experiments, we demonstrate that these polypeptides can enter both dendritic and cancer cells through mannose-receptors and subsequently enter the cell nucleus via the interaction with a nuclear pore complex (NPC) protein importin-α/ß1. To the best of our knowledge, this represents the first example of a synthetic polyvalent glycopolypeptide mimic that performs the dual function of entering mammalian cells through specific receptors and subsequently traffics into the nucleus. The conjugation of these end-functionalized shikimoylated-polypeptides to other biological entities, such as recombinant anticancer drugs, DNA, RNA, and CRISPR-Cas9, may be a suitable alternative for delivery of these biological entities into cells affected by cancer and other genetic diseases.


Asunto(s)
Núcleo Celular , Proteínas de Complejo Poro Nuclear , Animales , Núcleo Celular/genética , Citoplasma/metabolismo , Endocitosis , Mamíferos/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Péptidos/metabolismo
5.
RSC Med Chem ; 12(3): 416-429, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34046624

RESUMEN

A series of new benzimidazole-1,2,3-triazole hybrid derivatives have been synthesized via 'click' reaction and evaluated for their in vitro cytotoxicity as well as DNA binding affinity. MTT assay showed that all the six compounds are cytotoxic to PC3 and B16-F10 cancer cell lines. Though all the compounds showed moderate interaction with G4, c-Myc promoter DNA and dsDNA, 4f exhibited selective interaction with G-quadruplex DNA over duplex DNA as demonstrated by spectroscopic experiments like UV-vis spectroscopy, fluorescence spectroscopy, CD spectroscopy, thermal melting and fluorescence lifetime experiments. They also confirm the G-quadruplex DNA stabilizing potential of 4f. Viscosity measurements also confirm that 4f exhibits high G-quadruplex DNA selectivity over duplex DNA. Docking studies supported the spectroscopic observations. Cell cycle analysis showed that 4f induces G2/M phase arrest and induces apoptosis. Hence, from these experimental results it is evident that compound 4f may be a G-quadruplex DNA groove binding molecule with anticancer activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...