RESUMEN
Alzheimer's disease (AD) is the most common cause of dementia, and the gradual deterioration of brain function eventually leads to death. Almost all AD patients suffer from neuropsychiatric symptoms (NPS), the emergence of which correlates with dysfunctional serotonergic systems. Our aim is to generate hindbrain organoids containing serotonergic neurons using human induced Pluripotent Stem Cells (iPSCs). Work presented here is laying the groundwork for the application of hindbrain organoids to evaluate individual differences in disease progression, NPS development, and pharmacological treatment response. Human peripheral blood mononuclear cells (PBMCs) from healthy volunteers (n = 3), an AD patient without NPS (n = 1), and AD patients with NPS (n = 2) were reprogrammed into iPSCs and subsequently differentiated into hindbrain organoids. The presence of serotonergic neurons was confirmed by quantitative reverse transcription PCR, flow cytometry, immunocytochemistry, and detection of released serotonin (5-HT). We successfully reprogrammed PBMCs into 6 iPSC lines, and subsequently generated hindbrain organoids from 6 individuals to study inter-patient variability using a precision medicine approach. To assess patient-specific treatment effects, organoids were treated with different concentrations of escitalopram oxalate, commonly prescribed for NPS. Changes in 5-HT levels before and after treatment with escitalopram were dose-dependent and variable across patients. Organoids from different people responded differently to the application of escitalopram in vitro. We propose that this 3D platform might be effectively used for drug screening purposes to predict patients with NPS most likely to respond to treatment in vivo and to understand the heterogeneity of treatment responses.
RESUMEN
Neurodegenerative diseases, such as Alzheimer's and Parkinson's, affect a wide variety of the population and pose significant challenges with progressive and irreversible neural cell loss. The limitations of brain-targeting therapies and the unclear molecular mechanisms driving neurodegeneration hamper the possibility of developing successful treatment options. Thus, nanoscale drug delivery platforms offer a promising solution. This paper explores and compares lipidic nanoparticles, extracellular vesicles (EVs), and hybrid liposomal-EV nanoplatforms as advanced approaches for targeted delivery to combat neurodegeneration. Lipidic nanoparticles are well-characterized platforms that allow multi-drug loading and scalable production. Conversely, EVs offer the ability of selectively targeting specific tissues and high biocompatibility. The combination of these two platforms in one could lead to promising results in the treatment of neurodegeneration. However, many issues, such as the regulatory framework, remain to be solved before these novel products are translated into clinical practice.
RESUMEN
Preclinical models are essential research tools before novel therapeutic or diagnostic methods can be applied to humans. These range from in vitro cell monocultures to vastly more complex animal models, but clinical translation to humans often fails to deliver significant results. Three-dimensional (3D) organoid systems are being increasingly studied to establish physiologically relevant in vitro platforms in a trade-off between the complexity of the research question and the complexity of practical experimental setups. The sensitivity and precision of analytical tools are yet another limiting factors in what can be investigated, and mass spectrometry (MS) is one of the most powerful analytical techniques available to the scientific community. Its innovative use to spatially resolve biological samples has opened many research avenues in the field of MS imaging (MSI). Here, this work aims to explore the current scientific landscape in the application of MSI on organoids, with an emphasis on their combined potential to facilitate and improve preclinical studies.
Asunto(s)
Espectrometría de Masas , Organoides , Organoides/metabolismo , Organoides/citología , Humanos , Animales , Espectrometría de Masas/métodosRESUMEN
Agitation is one of the most eminent characteristics of neuropsychiatric symptoms (NPS) affecting people living with Alzheimer's and Dementia and has serious consequences for patients and caregivers. The current consensus is that agitation results, in part, from the disruption of ascending monoamine regulators of cortical circuits, especially the loss of serotonergic activity. It is believed that the first line of treatment for these conditions is selective serotonin reuptake inhibitors (SSRIs), but these are effective in only about 40% of patients. Person-specific biomarkers, for example, ones based on in vitro iPSC-derived models of serotonin activity, which predict who with Agitation responds to an SSRI, are a major clinical priority. Here, we report the generation of human-induced pluripotent stem cells (iPSCs) from a 74-year-old AD patient, the homozygous APOE ε4/ε4 carrier, who developed Agitation. His iPSCs were reprogrammed from peripheral blood mononuclear cells (PBMCs) using the transient expression of pluripotency genes. These display typical iPSC characteristics that are karyotypically normal and attain the capacity to differentiate into three germ layers. The newly patient-derived iPSC line offers a unique resource to investigate the underlying mechanisms associated with neuropsychiatric symptom progression in AD.
RESUMEN
BACKGROUND: Extracellular vesicles (EVs) and non-coding RNAs (ncRNAs) are emerging contributors to Alzheimer's disease (AD) pathophysiology. Differential abundance of ncRNAs carried by EVs may provide valuable insights into underlying disease mechanisms. Brain tissue-derived EVs (bdEVs) are particularly relevant, as they may offer valuable insights about the tissue of origin. However, there is limited research on diverse ncRNA species in bdEVs in AD. OBJECTIVE: This study explored whether the non-coding RNA composition of EVs isolated from post-mortem brain tissue is related to AD pathogenesis. METHODS: bdEVs from age-matched late-stage AD patients (nâ=â23) and controls (nâ=â10) that had been separated and characterized in our previous study were used for RNA extraction, small RNA sequencing, and qPCR verification. RESULTS: Significant differences of non-coding RNAs between AD and controls were found, especially for miRNAs and tRNAs. AD pathology-related miRNA and tRNA differences of bdEVs partially matched expression differences in source brain tissues. AD pathology had a more prominent association than biological sex with bdEV miRNA and tRNA components in late-stage AD brains. CONCLUSIONS: Our study provides further evidence that EV non-coding RNAs from human brain tissue, including but not limited to miRNAs, may be altered and contribute to AD pathogenesis.
RESUMEN
The recent advances in creating pluripotent stem cells from somatic cells and differentiating them into a variety of cell types is allowing us to study them without the caveats associated with disease-related changes. We generated induced Pluripotent Stem Cells (iPSCs) from eight Alzheimer's disease (AD) patients and six controls and used lentiviral delivery to differentiate them into excitatory glutamatergic neurons. We then performed RNA sequencing on these neurons and compared the Alzheimer's and control transcriptomes. We found that 621 genes show differences in expression levels at adjusted p < 0.05 between the case and control derived neurons. These genes show significant overlap and directional concordance with genes reported from a single-cell transcriptome study of AD patients; they include five genes implicated in AD from genome-wide association studies and they appear to be part of a larger functional network as indicated by an excess of interactions between them observed in the protein-protein interaction database STRING. Exploratory analysis with Uniform Manifold Approximation and Projection (UMAP) suggests distinct clusters of patients, based on gene expression, who may be clinically different. Our research outcomes will enable the precise identification of distinct biological subtypes among individuals with Alzheimer's disease, facilitating the implementation of tailored precision medicine strategies.
Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma/genética , Estudio de Asociación del Genoma Completo , Neuronas/metabolismoRESUMEN
The human brain is the organ with the most lipids after adipose tissues. The rich heterogeneity of the neural lipidome is being actively investigated with the aim of shedding new light into the physiological and pathological roles these compounds play in the brain. This is particularly important for the study of increasingly common neurodegenerative pathologies, such as Alzheimer's disease (AD), whose underlying mechanisms are still insufficiently understood and for which there is no cure. The present text dives into the current knowledge of the lipid composition of the brain, with a particular focus on the application of lipid profiling to AD research.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Encéfalo , LípidosRESUMEN
Background and Objectives: Variants of the apolipoprotein E (APOE) gene are the greatest known risk factors for sporadic Alzheimer disease (AD). Three major APOE isoform alleles, ε2, ε3, and ε4, encode and produce proteins that differ by only 1-2 amino acids but have different binding partner interactions. Whereas APOE ε2 is protective against AD relative to ε3, ε4 is associated with an increased risk for AD development. However, the role of APOE in gene regulation in AD pathogenesis has remained largely undetermined. Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells to dispose of unwanted materials and mediate intercellular communication, and they are implicated in AD pathophysiology. Brain-derived EVs (bdEVs) could act locally in the tissue and reflect cellular changes. To reveal whether APOE genotype affects EV components in AD brains, bdEVs were separated from patients with AD with different APOE genotypes for parallel small RNA and protein profile. Methods: bdEVs from late-stage AD brains (BRAAK stages 5-6) from patients with APOE genotypes ε2/3 (n = 5), ε3/3 (n = 5), ε3/4 (n = 6), and ε4/4 (n = 6) were separated using our published protocol into a 10,000g pelleted extracellular fraction (10K) and a further purified EV fraction. Counting, sizing, and multiomic characterization by small RNA sequencing and proteomic analysis were performed for 10K, EVs, and source tissue. Results: Comparing APOE genotypes, no significant differences in bdEV total particle concentration or morphology were observed. Overall small RNA and protein profiles of 10K, EVs, and source tissue also did not differ substantially between different APOE genotypes. However, several differences in individual RNAs (including miRNAs and tRNAs) and proteins in 10K and EVs were observed when comparing the highest and lowest risk groups (ε4/4 and ε2/3). Bioinformatic analysis and previous publications indicate a potential regulatory role of these molecules in AD. Discussion: For patients with late-stage AD in this study, only a few moderate differences were observed for small RNA and protein profiles between APOE genotypes. Among these, several newly identified 10K and EV-associated molecules may play roles in AD progression. Possibly, larger genotype-related differences exist and are more apparent in or before earlier disease stages.
RESUMEN
BACKGROUND: Brain tissue-derived extracellular vesicles (bdEVs) play neurodegenerative and protective roles, including in Alzheimer's disease (AD). Extracellular vesicles (EVs) may also leave the brain to betray the state of the CNS in the periphery. Only a few studies have profiled the proteome of bdEVs and source brain tissue. Additionally, studies focusing on bdEV cell type-specific surface markers are rare. OBJECTIVE: We aimed to reveal the pathological mechanisms inside the brain by profiling the tissue and bdEV proteomes in AD patients. In addition, to indicate targets for capturing and molecular profiling of bdEVs in the periphery, CNS cell-specific markers were profiled on the intact bdEV surface. METHODS: bdEVs were separated and followed by EV counting and sizing. Brain tissue and bdEVs from age-matched AD patients and controls were then proteomically profiled. Total tau (t-tau), phosphorylated tau (p-tau), and antioxidant peroxiredoxins (PRDX) 1 and 6 were measured by immunoassay in an independent bdEV separation. Neuron, microglia, astrocyte, and endothelia markers were detected on intact EVs by multiplexed ELISA. RESULTS: Overall, concentration of recovered bdEVs was not affected by AD. Proteome differences between AD and control were more pronounced for bdEVs than for brain tissue. Levels of t-tau, p-tau, PRDX1, and PRDX6 were significantly elevated in AD bdEVs compared with controls. Release of certain cell-specific bdEV markers was increased in AD. CONCLUSION: Several bdEV proteins are involved in AD mechanisms and may be used for disease monitoring. The identified CNS cell markers may be useful tools for peripheral bdEV capture.
Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Humanos , Enfermedad de Alzheimer/patología , Proteoma/metabolismo , Encéfalo/patología , Vesículas Extracelulares/metabolismo , Neuronas/metabolismoRESUMEN
RNA-delivery is a promising tool to develop therapies for difficult to treat diseases such as neurological disorders, by silencing pathological genes or expressing therapeutic proteins. However, in many cases RNA delivery requires a vesicle that could effectively protect the molecule from bio-degradation, bypass barriers i.e., the blood brain barrier, transfer it to a targeted tissue and efficiently release the RNA inside the cells. Many vesicles such as viral vectors, and polymeric nanoparticles have been mentioned in literature. In this review, we focus in the discussion of lipid-based advanced RNA-delivery platforms. Liposomes and lipoplexes, solid lipid nanoparticles and lipid nanoparticles are the main categories of lipidic platforms for RNA-delivery to the central nervous systems (CNS). A variety of surface particles' modifications and routes of administration have been studied to target CNS providing encouraging results in vivo. It is concluded that lipid-based nanoplatforms will play a key role in the development of RNA neuro-therapies.
RESUMEN
Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster (Mesocricetus auratus) model of COVID-19. Intranasal immunization resulted in high titres of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titres in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.
Asunto(s)
COVID-19 , Vesículas Extracelulares , Vacunas Virales , Animales , Anticuerpos Neutralizantes , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Liposomas , Mamíferos , Nanopartículas , SARS-CoV-2RESUMEN
Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster ( Mesocricetus auratus ) model of COVID-19. Intranasal immunization resulted in high titers of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titers in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.
RESUMEN
The treatment of complex and multifactorial diseases constitutes a big challenge in day-to-day clinical practice. As many parameters influence clinical phenotypes, accurate diagnosis and prompt therapeutic management is often difficult. Significant research and investment focuses on state-of-the-art genomic and metagenomic analyses in the burgeoning field of Precision (or Personalized) Medicine with genome-wide-association-studies (GWAS) helping in this direction by linking patient genotypes at specific polymorphic sites (single-nucleotide polymorphisms, SNPs) to the specific phenotype. The generation of polygenic risk scores (PRSs) is a relatively novel statistical method that associates the collective genotypes at many of a person's SNPs to a trait or disease. As GWAS sample sizes increase, PRSs may become a powerful tool for prevention, early diagnosis and treatment. However, the complexity and multidimensionality of genetic and environmental contributions to phenotypes continue to pose significant challenges for the clinical, broad-scale use of PRSs. To improve the value of PRS measures, we propose a novel pipeline which might better utilize GWAS results and improve the utility of PRS when applied to Alzheimer's Disease (AD), as a paradigm of multifactorial disease with existing large GWAS datasets that have not yet achieved significant clinical impact. We propose a refined approach for the construction of AD PRS improved by (1), taking into consideration the genetic loci where the SNPs are located, (2) evaluating the post-translational impact of SNPs on coding and non-coding regions by focusing on overlap with open chromatin data and SNPs that are expression quantitative trait loci (QTLs), and (3) scoring and annotating the severity of the associated clinical phenotype into the PRS. Open chromatin and eQTL data need to be carefully selected based on tissue/cell type of origin (e.g., brain, excitatory neurons). Applying such filters to traditional PRS on GWAS studies of complex diseases like AD, can produce a set of SNPs weighted according to our algorithm and a more useful PRS. Our proposed methodology may pave the way for new applications of genomic machine and deep learning pipelines to GWAS datasets in an effort to identify novel clinically useful genetic biomarkers for complex diseases like AD.
Asunto(s)
Enfermedad de Alzheimer/genética , Biomarcadores/metabolismo , Predisposición Genética a la Enfermedad , Herencia Multifactorial/genética , Humanos , Factores de RiesgoRESUMEN
Precision medicine, also known as personalized medicine, is concerned with finding the right treatment for the right patient at the right time. It is a way of thinking focused on parsing heterogeneity ultimately down to the level of the individual. Its main mission is to identify characteristics of heterogeneous clinical conditions so as to target tailored therapies to individuals. Precision Medicine however is not an agnostic collection of all manner of clinical, genetic and other biologic data in select cohorts. This is an important point. Simply collecting as much information as possible on individuals without applying this way of thinking should not be considered Precision Medicine.
Asunto(s)
Enfermedad de Alzheimer , Medicina de Precisión , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , HumanosRESUMEN
Alzheimer's disease (AD) is the most common form of dementia in the elderly, which is the fifth major cause of mortality for people over 65 years. While some of the hereditary genetic risk factors can be connected to the known amyloid and tau hypothesis, many treatments targeting this pathophysiology have failed in clinical trials or ineffectiveness of the drugs are attributed to the heterogeneous and multifactorial nature of AD. Thus, there is an urgent need to focus on finding therapeutic targets that can mitigate disease progression on patient based personalized medicine. This approach of precision medicine can tailor the potential treatment to a specific individual, so it is optimized for the maximum efficacy with minimum risk of side effects. To be able to understand varying responses among patients, identifying biomarkers that can be used as the therapeutic effectiveness will be of great interest. Here we describe advancement of precision medicine and biomarkers that can be essential tools for detection of the disease as well as for a marker of disease progression after intervention.
Asunto(s)
Enfermedad de Alzheimer , Medicina de Precisión , Anciano , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Biomarcadores , Progresión de la Enfermedad , Humanos , Proteínas tau/genéticaRESUMEN
Nodding syndrome is a pediatric epilepsy disorder associated with Onchocerca volvulus infection, but the mechanism driving this relationship is unclear. One hypothesis proposes that parasite-induced immune responses cross-react with human leiomodin-1 resulting in immune-mediated central nervous system (CNS) damage. However, as leiomodin-1 expression and epitope availability in human neurons remains uncharacterized, the relevance of leiomodin-1 autoimmunity is unknown. Leiomodin-1 transcript expression was assessed in silico using publicly available ribonucleic acid (RNA) sequencing databases and in tissue by in situ hybridization and quantitative polymerase chain reaction. Abundance and subcellular localization were examined by cell fractionation and immunoblotting. Leiomodin-1 transcripts were expressed in cells of the CNS, including neurons and astrocytes. Protein was detectable from all brain regions examined as well as from representative cell lines and in vitro differentiated neurons and astrocytes. Leiomodin-1 was expressed on the membrane of newly formed neurons, but not neural progenitor cells or mature neurons. Importantly, leiomodin-1 antibodies were only toxic to cells expressing leiomodin-1 on the membrane. Our findings provide evidence that leiomodin-1 is expressed in human neurons and glia. Furthermore, we show membrane expression mediates leiomodin-1 antibody toxicity, suggesting these antibodies may play a role in pathogenesis.
RESUMEN
Extracellular vesicles (EVs) are involved in a wide range of physiological and pathological processes by shuttling material out of and between cells. Tissue EVs may thus lend insights into disease mechanisms and also betray disease when released into easily accessed biological fluids. Since brain-derived EVs (bdEVs) and their cargo may serve as biomarkers of neurodegenerative diseases, we evaluated modifications to a published, rigorous protocol for separation of EVs from brain tissue and studied effects of processing variables on quantitative and qualitative outcomes. To this end, size exclusion chromatography (SEC) and sucrose density gradient ultracentrifugation were compared as final separation steps in protocols involving stepped ultracentrifugation. bdEVs were separated from brain tissues of human, macaque, and mouse. Effects of tissue perfusion and a model of post-mortem interval (PMI) before final bdEV separation were probed. MISEV2018-compliant EV characterization was performed, and both small RNA and protein profiling were done. We conclude that the modified, SEC-employing protocol achieves EV separation efficiency roughly similar to a protocol using gradient density ultracentrifugation, while decreasing operator time and, potentially, variability. The protocol appears to yield bdEVs of higher purity for human tissues compared with those of macaque and, especially, mouse, suggesting opportunities for optimization. Where possible, perfusion should be performed in animal models. The interval between death/tissue storage/processing and final bdEV separation can also affect bdEV populations and composition and should thus be recorded for rigorous reporting. Finally, different populations of EVs obtained through the modified method reported herein display characteristic RNA and protein content that hint at biomarker potential. To conclude, this study finds that the automatable and increasingly employed technique of SEC can be applied to tissue EV separation, and also reveals more about the importance of species-specific and technical considerations when working with tissue EVs. These results are expected to enhance the use of bdEVs in revealing and understanding brain disease.
RESUMEN
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is the major cause of dementia in older people. Here, we report the derivation of human induced pluripotent stem cells (iPSCs) from an AD patient at age of 80 who has the APOE ε4/ε4 genotype and is resilient to cognitive decline for 10 years. The iPSCs reprogrammed from the blood cells of this patient by transient expression of pluripotency genes maintain the ε4/ε4 genotype, are karyotypically normal and display typical iPSC characteristics. Upon differentiation, the iPSCs are able to differentiate into cells of the three germ layers, confirming their pluripotency.
Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Anciano , Enfermedad de Alzheimer/genética , Diferenciación Celular , Niño , Genotipo , HumanosRESUMEN
Human induced pluripotent stem cells (iPSCs) can generate virtually any cell type and therefore are applied to studies of organ development, disease modeling, drug screening and cell replacement therapy. Under proper culture conditions in vitro induced pluripotent stem cells (iPSCs) can be differentiated to form organ-like tissues, also known as "organoids", which resemble organs more closely than cells, in vivo. We hypothesized that human brain organoids can be used as an experimental model to study mechanisms underlying DNA repair in human neurons and their progenitors after radiation-induced DNA double-strand breaks (DSBs), the most severe form of DNA damage. To this end, we customized a protocol for brain organoid generation that is time efficient. These organoids recapitulate key features of human cortical neuron development, including a subventricular zone containing neural progenitors that mature to postmitotic cortical neurons. Using immunofluorescence to measure DNA DSB markers, such as γ-H2AX and 53BP1, we quantified the kinetics of DSB repair in neural progenitors within the subventricular zone for up to 24 h after a single 2 Gy dose of ionizing radiation. Our data on DNA repair in progenitor versus mature neurons indicate a similar timeline: both repair DNA DSBs which is mostly resolved by 18 h postirradiation. However, repair kinetics are more acute in progenitors than mature neurons in the mature organoid. Overall, this study supports the use of 3D organoid culture technology as a novel platform to study DNA damage responses in developing or mature neurons, which has been previously difficult to study.