Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ther Deliv ; : 1-20, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287183

RESUMEN

Aim: Dasatinib (DST) is an oral tyrosine kinase inhibitor with poor aqueous solubility. To outwit this issue, a solid self-nano emulsifying drug delivery system (S-SNEDDS) of DST was formulated.Methods: I-optimal mixture design was used for optimization of DST-loaded SNEDDS using Linalool, Cremophor RH40 and Transcutol P. S-SNEDDS underwent physicochemical characterization, in-vitro release and ex-vivo permeation, cell-based assays and pharmacokinetic study.Results: DST-S-SNEDDS showed globule size and PDI of 141.53 ± 5.371 nm and 0.282 ± 0.020, respectively. DST-S-SNEDDS revealed significantly lower IC50 (1.825 µg/mL) than free DST (7.298 µg/mL) in MDA-MB-231. In-vivo pharmacokinetic study revealed 1.94-fold increment in AUC0-t for the DST-S-SNEDDS group than free DST.Conclusion: S-SNEDDS could be promising approach for improving bioavailability and efficacy of DST.


[Box: see text].

2.
Int J Pharm ; 665: 124672, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39245084

RESUMEN

Dasatinib (DAB) has been explored for repurposing in the treatment of breast cancer (BC) due to its known effectiveness in treating leukemia, in addition to its role as a tyrosine kinase inhibitor. Gallic acid (GA) was chosen as a co-former due to its anticancer potential in BC, as demonstrated in several previous studies. DAB is a low-solubility drug, which is a significant hurdle for its oral bioavailability. To address this limitation, a DAB and GA co-amorphous (DAB-GA-CA) system was developed using liquid-assisted grinding and ball mill technology to enhance solubility, bioavailability, and anti-tumor efficacy. Physical characterization investigation revealed that the emergence of the halo diffractogram in PXRD, single glass transition temperature (Tg) value at 111.7 °C in DSC thermogram, and irregularly shaped blocks with loose, porous surfaces in SEM analysis indicated the formation of the DAB-GA-CA system at 1:1 M ratio. Furthermore, FTIR, Raman spectroscopy, in-silico molecular docking, and molecular dynamic studies confirmed the intermolecular hydrogen connections between DAB and GA. Moreover, the outcomes of the ligands (DAB and GA) and receptors (BCL-2, mTOR, estrogen receptor, and HER-2) docking studies demonstrated that both DAB and GA could interact with those receptors, leading to preventive action on BC cells. Additionally, the solubility and dissolution rate significantly improved at pH 6.8, and the permeability study indicated that DAB-GA-CA showed 1.9 times higher apparent permeability compared to crystalline DAB. Furthermore, in vitro cytotoxicity assessments of the DAB-GA-CA system revealed 3.42 times lower IC50 than free DAB. The mitochondrial membrane depolarization, apoptotic index, and reactive oxygen species formation in MCF-7 cells were also notably higher in the DAB-GA-CA system than in free DAB. Hence, this research suggests that the DAB-GA-CA system could substantially enhance oral delivery, solubility, and therapeutic efficacy.

3.
Drug Discov Today ; 29(7): 104050, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830502

RESUMEN

Flavonoids are polyphenolic compounds that have multiple benefits in treating various life-threatening diseases. Despite their diverse pharmacological activities, the market potential of flavonoids is hampered due to their poor solubility and low bioavailability after oral administration. The current review highlights the role of co-crystals and co-amorphous systems (CAMs) in enhancing the solubility, permeability, bioavailability, and therapeutic efficacy of flavonoids. It also explains the significance of flavonoid-based co-formers in the formation of co-crystals and CAMs with other APIs to improve their efficacy. Future perspectives, patented formulations, commercial medications (including their phases of clinical trials), and challenges associated with the use of flavonoid-based co-crystals and CAMs are also mentioned in the review.


Asunto(s)
Disponibilidad Biológica , Flavonoides , Solubilidad , Flavonoides/química , Flavonoides/farmacología , Humanos , Animales , Cristalización
4.
Adv Biol (Weinh) ; 8(6): e2300487, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581078

RESUMEN

Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.


Asunto(s)
Neoplasias , Animales , Humanos , Neoplasias/patología , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Ratones , Microambiente Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
5.
Int J Pharm ; 651: 123784, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38185340

RESUMEN

Dasatinib (DAS) is an oral tyrosine kinase inhibitor; however, its efficacy is significantly subsided by its low oral bioavailability. The present research aimed to improve DAS's oral delivery and efficacy in triple-negative breast cancer by fabricating its mucoadhesive lecithin-chitosan hybrid nanoparticles (DAS-L/CS-NPs). DAS-L/CS-NPs were optimized using Box-Behnken design which showed mean particle size and percent entrapment efficiency of 179.7 ± 5.42 nm and 64.65 ± 0.06 %, respectively. DAS-L/CS-NPs demonstrated sustained release profile in different release media up to 48 h and showed 10 times higher apparent permeability coefficient and flux than free DAS suspension. The binding of DAS-L/CS-NPs to the mucus layer was demonstrated via ex-vivo mucoadhesion study and change in absorbance using turbidimetry. In cell culture studies, DAS-L/CS-NPs revealed a 4.14-fold decrease in IC50, significantly higher cellular uptake and mitochondrial membrane depolarization, 3.82-fold increased reactive oxygen species generation and 2.10-fold enhanced apoptosis in MDA-MB-231 cells than free DAS. In in-vivo pharmacokinetic assessment, DAS-L/CS-NPs showed a 5.08-fold and 3.74-fold rise in AUC (0-t) and Cmax than free DAS suspension, respectively. An acute toxicity study revealed a good safety profile of DAS-L/CS-NPs. In a nutshell, proposed hybrid nanoparticles are promising carriers for improved oral delivery of poorly water-soluble drugs.


Asunto(s)
Quitosano , Nanopartículas , Portadores de Fármacos/farmacocinética , Lecitinas , Dasatinib , Tamaño de la Partícula
6.
J Biomol Struct Dyn ; 42(3): 1469-1484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37272883

RESUMEN

Drug repurposing is proved to be a groundbreaking concept in the field of cancer research, accelerating the pace of de novo drug discovery by investigating the anti-cancer activity of the already approved drugs. On the other hand, it got highly benefitted from the advancement in the in-silico tools and techniques, which are used to build up the initial "proof of concept" based on the drug-target interaction. Acalabrutinib (ACL) is a well-known drug for the treatment of hematological malignancies. But, the therapeutic ability of ACL against solid tumors is still unexplored. Thereby, the activity of ACL on breast cancer and lung cancer was evaluated utilizing different computational methods. A series of proteins such as VEGFR1, ALK, BCL2, CXCR-4, mTOR, AKT, PI3K, HER-2, and Estrogen receptors were selected based on their involvement in the progression of the breast as well as lung cancer. A multi-level computational study starting from protein-ligand docking to molecular dynamic (MD) simulations were performed to detect the binding potential of ACL towards the selected proteins. Results of the study led to the identification of ACL as a ligand that showed a high docking score and binding energy with HER-2, mTOR, and VEGFR-1 successively. Whereas, the MD simulations study has also shown good docked complex stability of ACL with HER2 and VEGFR1. Our findings suggest that interaction with those receptors can lead to preventive action on both breast and lung cancer, thus it can be concluded that ACL could be a potential molecule for the same purpose.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias Pulmonares , Pirazinas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ligandos , Benzamidas , Simulación de Dinámica Molecular , Serina-Treonina Quinasas TOR , Simulación del Acoplamiento Molecular
7.
Parasitol Int ; 100: 102848, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38159836

RESUMEN

The present work aimed to develop and evaluate AmB-loaded nano-emulsion (AmB-NE) which will augment the solubility of AmB and lead to enhanced anti-leishmanial activity. The composition of AmB-NE was optimized by systematic screening followed by DoE-extreme vertices mixture design. The optimized NE revealed mean droplet size and PDI of 44.19 ± 5.5 nm, 0.265 ± 0.0723, respectively. The NE could efficiently encapsulate AmB with drug content and efficiency 83.509 ± 0.369% and 81.659 ± 0.013%, respectively. The presence of cholesterol and stearyl amine retarded the release (P < 0.0001) of AmB significantly compared to AmB suspension. The AmB-NE and pure AmB suspension demonstrated the IC50 of 0.06309 µg/mL and 0.3309 µg/mL against L.donovani promastigotes after 48 h incubation. The formulation was robust at all exaggerated stability conditions such as freeze-thaw and centrifugation. These findings indicate that AmB-NE is an attractive approach to treat visceral leishmaniasis with improved activity.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Leishmania , Leishmaniasis Visceral , Animales , Anfotericina B/farmacología , Antiprotozoarios/farmacología , Leishmaniasis Visceral/tratamiento farmacológico , Emulsiones/farmacología
8.
Carbohydr Polym ; 326: 121644, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142105

RESUMEN

In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias , Humanos , Quitosano/química , Sistemas de Liberación de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Portadores de Fármacos/química
10.
Pharm Dev Technol ; 28(5): 460-478, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37092801

RESUMEN

Lung cancer ranks second position among the cancer-related deaths. Osimertinib mesylate (OSM) is a tyrosine-kinase-inhibitor which can effectively treat non-small cell lung cancer (NSCLC), but still there are certain limitations and side effects which could be circumvented by polymeric nanoparticles approach. Hence, this research was aimed to develop drug-loaded biodegradable polycaprolactone nanoparticles (PCL-NPs) such as OSM-loaded PCL-NPs (PCL-OSM-NPs) and chitosan fabricated OSM-loaded PCL-NPs (CS-PCL-OSM-NPs) to achieve active-targeting of OSM in the cancerous lung tissue. Thus, CS-PCL-OSM-NPs enhance the anticancer efficacy due to active targeting nature and thereby reduces off-target side effects of OSM in the NSCLC treatment. Blank PCL-NPs, PCL-OSM-NPs, and CS-PCL-OSM-NPs were prepared by nanoprecipitation method. Optimized blank PCL-NPs, PCL-OSM-NPs, and CS-PCL-OSM-NPs exhibited the mean particle size of 90.2 ± 4.7 nm, 167.7 ± 2.9 nm, and 233.7 ± 4.8 nm respectively. The encapsulation efficiency % (%EE) of PCL-OSM-NPs was found to be 68.4 ± 3.2%. In vitro drug release study demonstrated sustained release profile of 69.5 ± 5% and 65.7 ± 1.5% for OSM from both the PCL-OSM-NPs and CS-PCL-OSM-NPs, respectively. The PCL-OSM-NPs and CS-PCL-OSM-NPs demonstrated the inhibition of 82.2 ± 0.5% and 81.9 ± 0.2% in A549 cancer cells respectively which clearly signified the improved efficacy. Moreover, the PCL-OSM-NPs and CS-PCL-OSM-NPs exhibited significantly less hemolysis than OSM indicating safety of the formulation. These findings indicate that biohemocompatible CS-PCL-OSM-NPs is an attractive option to treat NSCLC with enhanced anticancer activity and reduced side effects.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Quitosano , Neoplasias Pulmonares , Nanopartículas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Poliésteres , Pulmón , Portadores de Fármacos
11.
Drug Deliv Transl Res ; 13(10): 2614-2638, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37067745

RESUMEN

Docetaxel (DTX) is a first-line chemotherapeutic molecule with a broad-spectrum anticancer activity. On the other hand, carvacrol (CV) has anti-inflammatory, antioxidant, cytotoxic, and hepatoprotective properties that could reduce undue toxicity caused by DTX chemotherapy. Thus, in order to overcome the challenges posed by DTX's poor aqueous solubility, low permeability, hepatic first pass, and systemic toxicities, we have developed a novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) co-loaded with DTX and CV. In the present investigation, liquid-SNEDDS (L-SNEDDS) were fabricated using Nigella sativa oil, Cremophor RH 40, and Ethanol which was converted into solid by lyophilization using Aerosil 200. The reconstituted CV-DTX-S-SNEDDS showed an average globule size of < 200 nm with promising flow properties (angle of repose θ: 33.22 ± 0.06). Additionally, 2.3-fold higher dissolution of DTX was observed from CV-DTX-S-SNEDDS after 6 h as compared to free DTX. Similar trend was followed in dialysis release experiments with 1.5-fold higher release within 24 h. Ex vivo permeation studies demonstrated significantly increased permeation of 1077.02 ± 12.72 µg/cm2 of CV-DTX-S-SNEDDS after 12 h. In vitro cell cytotoxicity studies revealed 5.2-fold reduction in IC50 as compared to free DTX in MDA-MB-231 cells. Formulation was able to induce higher apoptosis in cells treated with CV-DTX-S-SNEDDS as compared to free DTX and CV. It was evident from toxicity studies that CV-DTX-S-SNEDDS was well tolerated at higher dose where CV was able to manage the toxic effects of free DTX. In vivo pharmacokinetic study showed 3.4-fold increased Cmax and improved oral bioavailability as compared to free DTX. Thus, CV-DTX-S-SNEDDS could be an encouraging option for facilitating DTX oral therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Docetaxel , Liberación de Fármacos , Administración Oral , Emulsiones , Solubilidad , Tamaño de la Partícula , Disponibilidad Biológica
12.
Carbohydr Polym ; 312: 120821, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059549

RESUMEN

Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.


Asunto(s)
Quitosano , Neoplasias , Humanos , Ácido Hialurónico , Neoplasias/tratamiento farmacológico , Polímeros , Fructanos
13.
Drug Deliv Transl Res ; 13(6): 1621-1653, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36795198

RESUMEN

Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Almost 70-80% of cases of BC are curable at the early non-metastatic stage. BC is a heterogeneous disease with different molecular subtypes. Around 70% of breast tumors exhibit estrogen-receptor (ER) expression and endocrine therapy is used for the treatment of these patients. However, there are high chances of recurrence in the endocrine therapy regimen. Though chemotherapy and radiation therapy have substantially improved survival rates and treatment outcomes in BC patients, there is an increased possibility of the development of resistance and dose-limiting toxicities. Conventional treatment approaches often suffer from low bioavailability, adverse effects due to the non-specific action of chemotherapeutics, and low antitumor efficacy. Nanomedicine has emerged as a conspicuous strategy for delivering anticancer therapeutics in BC management. It has revolutionized the area of cancer therapy by increasing the bioavailability of the therapeutics and improving their anticancer efficacy with reduced toxicities on healthy tissues. In this article, we have highlighted various mechanisms and pathways involved in the progression of ER-positive BC. Further, different nanocarriers delivering drugs, genes, and natural therapeutic agents for surmounting BC are the spotlights of this article.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/uso terapéutico , Nanomedicina
14.
AAPS PharmSciTech ; 24(1): 50, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703085

RESUMEN

Amongst the several nano-drug delivery systems, lipid or polymer-based core-shell nanocapsules (NCs) have garnered much attention of researchers owing to its multidisciplinary properties and wide application. NCs are structured core-shell systems in which the core is an aqueous or oily phase protecting the encapsulated drug from environmental conditions, whereas the shell can be lipidic or polymeric. The core is stabilized by surfactant/lipids/polymers, which control the release of the drug. The presence of a plethora of biocompatible lipids and polymers with the provision of amicable surface modifications makes NCs an ideal choice for precise drug delivery. In the present article, multiple lipidic and polymeric NC (LNCs and PNCs) systems are described with an emphasis on fabrication methods and characterization techniques. Far-reaching applications as a carrier or delivery system are demonstrated for oral, parenteral, nasal, and transdermal routes of administration to enhance the bioavailability of hard-to-formulate drugs and to achieve sustained and targeted delivery. This review provide in depth understanding on core-shell NC's mechanism of absorption, surface modification, size tuning, and toxicity moderation which overshadows the drawbacks of conventional approaches. Additionally, the review shines a spotlight on the current challenges associated with core-shell NCs and applications in the foreseeable future.


Asunto(s)
Nanocápsulas , Sistemas de Liberación de Medicamentos , Polímeros , Aceites , Disponibilidad Biológica , Portadores de Fármacos
15.
J Control Release ; 347: 211-236, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533946

RESUMEN

Hematological malignancy like lymphoma originates in lymph tissues and has a propensity to spread across other organs. Managing such tumors is challenging as conventional strategies like surgery and local treatment are not plausible options and there are high chances of relapse. The advent of novel targeted therapies and antibody-mediated treatments has proven revolutionary in the management of these tumors. Although these therapies have an added advantage of specificity in comparison to the traditional chemotherapy approach, such treatment alternatives suffer from the occurrence of drug resistance and dose-related toxicities. In past decades, nanomedicine has emerged as an excellent surrogate to increase the bioavailability of therapeutic moieties along with a reduction in toxicities of highly cytotoxic drugs. Nanotherapeutics achieve targeted delivery of the therapeutic agents into the malignant cells and also have the ability to carry genes and therapeutic proteins to the desired sites. Furthermore, nanomedicine has an edge in rendering personalized medicine as one type of lymphoma is pathologically different from others. In this review, we have highlighted various applications of nanotechnology-based delivery systems based on lipidic, polymeric and inorganic nanomaterials that address different targets for effectively tackling lymphomas. Moreover, we have discussed recent advances and therapies available exclusively for managing this malignancy.


Asunto(s)
Antineoplásicos , Linfoma , Nanopartículas , Neoplasias , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Linfoma/tratamiento farmacológico , Nanomedicina , Neoplasias/tratamiento farmacológico
16.
AAPS PharmSciTech ; 22(8): 264, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34734325

RESUMEN

The human race is consistently striving for achieving good health and eliminate disease-causing factors. For the last few decades, scientists have been endeavoring to invent and innovate technologies that can substitute the conventional dosage forms and enable targeted and prolonged drug release at a particular site. The novel multi-matrix technology is a type of matrix formulation where the formulation is embraced to have a matrix system with multiple number of matrices. The MMX technology embraces with a combination of outer hydrophilic layer and amphiphilic/lipophilic core layer, within which drug is encapsulated followed by enteric coating for extended/targeted release at the required site. In comparison to conventional oral drug delivery systems and other drug delivery systems, multi-matrix (MMX) technology formulations afford many advantages. Additionally, it attributes for targeting strategy aimed at the colon and offers modified prolonged drug release. Thus, it has emerged rapidly as a potential alternative option in targeted oral drug delivery. However, the development of this MMX technology formulations is a exigent task and also has its own set of limitations. Due to its promising advantages and colon targeting strategy over the other colon targeted drug delivery systems, premier global companies are exploiting its potential. This article review deep insights into the formulation procedures, drug delivery mechanism, advantages, limitations, safety and efficacy studies of various marketed drug formulations of MMX technology including regulatory perspectives and future perspectives.


Asunto(s)
Colitis Ulcerosa , Mesalamina , Antiinflamatorios/uso terapéutico , Budesonida/uso terapéutico , Humanos , Estudios Retrospectivos , Tecnología
17.
J Control Release ; 337: 646-660, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34384795

RESUMEN

A significant proportion of recently approved drug molecules possess poor aqueous solubility which further restrains their desired bioavailability. Poor aqueous solubility of these drugs poses significant hurdles in development of novel drug delivery systems and achieving target response. Self-emulsifying drug delivery systems (SEDDS) emerged as an insightful approach for delivering highly hydrophobic entities to enhance their bioavailability. Conventional SEDDS were developed in a liquid form which owned numerous shortcomings like low stability and drug loading efficiency, fewer choices of dosage forms and irreversible precipitation of drug or excipients. To address these curbs solid-SEDDS (S-SEDDS) was introduced as an efficient strategy that combined advantages of solid dosage forms such as increased stability, portability and patient compliance along with substantial improvement in the bioavailability. S-SEDDS are isotropic mixtures of oil, surfactant, solvent and co-solvents generated by solidification of liquid or semisolid self-emulsifying ingredients onto powders. The present review highlights components of S-SEDDS, their peculiarities to be considered while designing solid dosage forms and various methods of fabrication. Lastly, key challenges faced during development, applications and future directions for the research in this area are thoroughly summarized.


Asunto(s)
Sistemas de Liberación de Medicamentos , Excipientes , Administración Oral , Disponibilidad Biológica , Emulsionantes , Emulsiones , Humanos , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...