Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1709: 464375, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37734240

RESUMEN

Since lipid nanoparticles (LNP) have emerged as a potent drug delivery system, the objective of this study was to develop and optimize a robust high-performance liquid chromatography with charged aerosol detectors (HPLCCAD) method to simultaneously quantify different lipids in LNPs using the analytical quality by design (AQbD) approach. After defining analytical target profile (ATP), critical method attributes (CMAs) were established as a resolution between the closely eluting lipid peaks and the total analysis time. Thus, potential high-risk method parameters were identified through the initial risk assessment. These parameters were screened using Plackett-Burman design, and three critical method parameters (CMPs)-MeOH ratio, flow rate, and column temperature-were selected for further optimization. Box-Behnken design was employed to develop the quadratic models that explain the relationship between the CMPs and CMAs and to determine the optimal operating conditions. Moreover, to ensure the robustness of the developed method, a method operable design region (MODR) was established using the Monte Carlo simulation. The MODR was identified within the probability map, where the risk of failure to achieve the desired CMAs was less than 1%. The optimized method was validated according to the ICH guidelines (linearity: R2 > 0.995, accuracy: 97.15-100.48% recovery, precision: RSD < 5%) and successfully applied for the analysis of the lipid in the LNP samples. The development of the analytical method to quantify the lipids is essential for the formulation development and quality control of LNP-based drugs since the potency of LNPs is significantly dependent on the compositions and contents of the lipids in the formation.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Cromatografía Líquida de Alta Presión/métodos , Lípidos
2.
Eur J Pharm Biopharm ; 190: 150-160, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37516315

RESUMEN

Although lipid nanoparticles (LNP) are potential carriers of various pharmaceutical ingredients, further investigation for maintaining their stability under various environmental stressors must be performed. This study evaluated the influence of PEGylation and stress conditions on the stability of siRNA-loaded LNPs with different concentrations of PEG (0.5 mol%; 0.5 % PEG-LNP and 1.0 mol%; 1.0 % PEG-LNP) anchored to their surface. We applied end-over-end agitation, elevated temperature, and repeated freeze and thaw (F/T) cycles as physicochemical stressors of pH and ionic strength. Dynamic light scattering (DLS), flow imaging microscopy (FIM), and ionic-exchange chromatography (IEX) were to determine the degree of aggregation and change in siRNA content. The results indicate that 0.5 % PEG-LNP resisted aggregation only at low pH levels or with salt, whereas 1.0 % PEG-LNP had increased colloidal stability except at pH 4. 0.5 % PEG-LNP withstood aggregation until 71 °C and three cycles of F/T. In contrast, 1.0 % PEG-LNP maintained colloidal stability at 90 °C and seven F/T cycles. Moreover, 1.0 % PEG-LNP had higher siRNA stability under all stress conditions. Therefore, to ensure the stability of LNP and encapsulated siRNA, the PEG concentration must be carefully controlled while considering LNPs' colloidal instability mechanisms under various stress conditions.


Asunto(s)
Lípidos , Nanopartículas , ARN Interferente Pequeño/química , Lípidos/química , Nanopartículas/química , Congelación
3.
Int J Pharm ; 642: 123091, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37268032

RESUMEN

Subvisible particles generated during the preparation or administration of biopharmaceuticals might increase the risk of immunogenicity, inflammation, or organ dysfunction. To investigate the impact of an infusion system on the level of subvisible particles, we compared two types of infusion sets based on peristaltic movement (Medifusion DI-2000 pump) and a gravity-based infusion system (Accu-Drip) using intravenous immunoglobulin (IVIG) as a model drug. The peristaltic pump was found to be more susceptible to particle generation compared to the gravity infusion set owing to the stress generated due to constant peristaltic motion. Moreover, the 5-µm in-line filter integrated into the tubing of the gravity-based infusion set further contributed to the reduction of particles mostly in the range ≥ 10 µm. Furthermore, the filter was also able to maintain the particle level even after the pre-exposure of samples to silicone oil-lubricated syringes, drop shock, or agitation. Overall, this study suggests the need for the selection of an appropriate infusion set equipped with an in-line filter based on the sensitivity of the product.


Asunto(s)
Anticuerpos Monoclonales , Aceites de Silicona , Infusiones Intravenosas , Preparaciones Farmacéuticas , Jeringas
4.
Int J Pharm ; 640: 123012, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37142140

RESUMEN

To develop a combinatorial artificial-neural-network design-of-experiment (ANN-DOE) model, the effect of ionizable lipid, an ionizable lipid-to-cholesterol ratio, N/P ratio, flow rate ratio (FRR), and total flow rate (TFR) on the outcome responses of mRNA-LNP vaccine were evaluated using a definitive screening design (DSD) and machine learning (ML) algorithms. Particle size (PS), PDI, zeta potential (ZP), and encapsulation efficiency (EE) of mRNA-LNP were optimized within a defined constraint (PS 40-100 nm, PDI ≤ 0.30, ZP≥(±)0.30 mV, EE ≥ 70 %), fed to ML algorithms (XGBoost, bootstrap forest, support vector machines, k-nearest neighbors, generalized regression-Lasso, ANN) and prediction was compared to ANN-DOE model. Increased FRR decreased the PS and increased ZP, while increased TFR increased PDI and ZP. Similarly, DOTAP and DOTMA produced higher ZP and EE. Particularly, a cationic ionizable lipid with an N/P ratio ≥ 6 provided a higher EE. ANN showed better predictive ability (R2 = 0.7269-0.9946), while XGBoost demonstrated better RASE (0.2833-2.9817). The ANN-DOE model outperformed both optimized ML models by R2 = 1.21 % and RASE = 43.51 % (PS prediction), R2 = 0.23 % and RASE = 3.47 % (PDI prediction), R2 = 5.73 % and RASE = 27.95 % (ZP prediction), and R2 = 0.87 % and RASE = 36.95 % (EE prediction), respectively, which demonstrated that ANN-DOE model was superior in predicting the bioprocess compared to independent models.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Lípidos , Vacunas de ARNm
5.
Int J Pharm ; 622: 121875, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35636628

RESUMEN

The microspheres for 1-month (PLGA-based) and 3-month (PLA-based) drug releases of leuprolide were manufactured using an IVL-DrugFluidic™ system and their morphology, particle size and distribution, and encapsulation efficiency were compared with the commercialized products. In vivo test was also conducted to monitor the amount of leuprolide and testosterone in plasma after a single subcutaneous injection in male Sprague-Dawley (SD) rats and male Beagle dogs. The median diameter, span value, drug loading, and encapsulation efficiency of PLGA-based microspheres (63.29 µm, 0.26, 13.15%, and 78.90%, respectively) and PLA-based microspheres (80.28 µm, 0.21, 14.42%, and 86.50%, respectively) demonstrated narrow particle size distribution (monodispersed) and efficient drug loading/encapsulation efficiency. Both the microspheres exhibited a desired time-dependent drug release profile and reduced initial burst release by 16-fold in SD rats and 240-fold in Beagle dogs compared to Leuplin DPS®. Moreover, the testosterone level in plasma was suppressed to < 0.50 ng/mL after 28 days with a steady plasma drug concentration. The results suggested that newly developed leuprolide-loaded microspheres produced by the IVL-DrugFluidic™ system could provide extended drug release with advantages such as reduced initial burst release and testosterone level suppression, along with steady plasma drug concentration, over the existing products.


Asunto(s)
Leuprolida , Testosterona , Animales , Preparaciones de Acción Retardada , Perros , Masculino , Microesferas , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Ratas Sprague-Dawley
6.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209181

RESUMEN

The solubility of glibenclamide was evaluated in DMSO, NMP, 1,4-dioxane, PEG 400, Transcutol® HP, water, and aqueous mixtures (T = 293.15~323.15 K). It was then recrystallized to solvate and compressed into tablets, of which 30-day stability and dissolution was studied. It had a higher solubility in 1,4-dioxane, DMSO, NMP (Xexp = 2.30 × 103, 3.08 × 104, 2.90 × 104) at 323.15 K, its mixture (Xexp = 1.93 × 103, 1.89 × 104, 1.58 × 104) at 298.15 K, and 1,4-dioxane (w) + water (1-w) mixture ratio of w = 0.8 (Xexp = 3.74 × 103) at 323.15 K. Modified Apelblat (RMSD ≤ 0.519) and CNIBS/R-K model (RMSD ≤ 0.358) suggested good comparability with the experimental solubility. The minimum value of ΔG° vs ΔH° at 0.70 < x2 < 0.80 suggested higher solubility at that molar concentration. Based on the solubility, it was recrystallized into the solvate, which was granulated and compressed into tablets. Among the studied solvates, the tablets of glibenclamide dioxane solvate had a higher initial (95.51%) and 30-day (93.74%) dissolution compared to glibenclamide reference (28.93%). There was no stability issue even after granulation, drying, or at pH 7.4. Thus, glibenclamide dioxane solvate could be an alternative form to improve the molecule's properties.


Asunto(s)
Liberación de Fármacos , Gliburida/química , Gliburida/farmacología , Termodinámica , Cromatografía Líquida de Alta Presión , Cristalización , Estabilidad de Medicamentos , Estructura Molecular , Solubilidad , Solventes/química , Análisis Espectral
9.
Int J Pharm ; 608: 121039, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34450228

RESUMEN

To evaluate in vivo drug release profiles in beagle dogs, finasteride-loaded PLGA microspheres were prepared using a novel method of IVL-PPF Microsphere® microfluidic device. Briefly, the dispersed phase (PLGA and finasteride in dichloromethane) was mixed with the continuous phase (0.25% w/v PVA aqueous solution) in the parallelized microchannels. After lyophilization, the diameter of the microspheres was around 40 µm (PLGA 7502A or 5002A) and around 30 µm (PLGA/PLA02A mixture). Their CV and span values suggested a narrow size distribution in repeated batch preparations. The in vivo drug release from the PLGA microspheres exhibited three substantial phases: an initial burst, a moderate release, and then a plateau. The microspheres based on PLGA 7502A (75:25 co-polymer) demonstrated extended drug release for around 1 month with a minimized initial burst release compared to PLGA 5002A (50:50 co-polymer). Moreover, the in vivo drug release profile in beagle dogs was proportionally related to the amount of drug loading. Furthermore, the addition of PLA02A into the fabrication of the microsphere synergistically extended the drug release up to 3 months. These results demonstrated the value of this method to achieve uniform microspheres and extend the drug release properties with interpretative in vivo PK profiles.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Animales , Perros , Microfluídica , Microesferas , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
10.
Pharmaceutics ; 11(4)2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-31010054

RESUMEN

In recent years, many attempts have been made to enhance the drug bioavailability and therapeutic effectiveness of oral dosage forms. In this context, various gastroretentive drug delivery systems (GRDDS) have been used to improve the therapeutic efficacy of drugs that have a narrow absorption window, are unstable at alkaline pH, are soluble in acidic conditions, and are active locally in the stomach. In this review, we discuss the physiological state of the stomach and various factors that affect GRDDS. Recently applied gastrointestinal technologies such as expandable, superporous hydrogel; bio/mucoadhesive, magnetic, ion-exchange resin; and low- and high-density-systems have also been examined along with their merits and demerits. The significance of in vitro and in vivo evaluation parameters of various GRDDS is summarized along with their applications. Moreover, future perspectives on this technology are discussed to minimize the gastric emptying rate in both the fasted and fed states. Overall, this review may inform and guide formulation scientists in designing the GRDDS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...