Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(43): 97463-97485, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37594709

RESUMEN

Flooding events are determining a significant amount of damages, in terms of economic loss and also casualties in Asia and Pacific areas. Due to complexity and ferocity of severe flooding, predicting flood-prone areas is a difficult task. Thus, creating flood susceptibility maps at local level is though challenging but an inevitable task. In order to implement a flood management plan for the Balrampur district, an agricultural dominant landscape of India, and strengthen its resilience, flood susceptibility modeling and mapping are carried out. In the present study, three hybrid machine learning (ML) models, namely, fuzzy-ANN (artificial neural network), fuzzy-RBF (radial basis function), and fuzzy-SVM (support vector machine) with 12 topographic, hydrological, and other flood influencing factors were used to determine flood-susceptible zones. To ascertain the relationship between the occurrences and flood influencing factors, correlation attribute evaluation (CAE) and multicollinearity diagnostic tests were used. The predictive power of these models was validated and compared using a variety of statistical techniques, including Wilcoxon signed-rank, t-paired tests and receiver operating characteristic (ROC) curves. Results show that fuzzy-RBF model outperformed other hybrid ML models for modeling flood susceptibility, followed by fuzzy-ANN and fuzzy-SVM. Overall, these models have shown promise in identifying flood-prone areas in the basin and other basins around the world. The outcomes of the work would benefit policymakers and government bodies to capture the flood-affected areas for necessary planning, action, and implementation.


Asunto(s)
Agricultura , Inundaciones , India , Asia , Aprendizaje Automático
2.
Urban Clim ; 41: 101082, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35024327

RESUMEN

Is the impact of city-scale lockdown in response to 2nd surge of COVID-19, behavioural changes in people owing to yearlong cohabitation with COVID-19, and partial vaccination on air quality different from the impact of nationwide lockdown during COVID-19's 1st surge in March 2020? Targeting this objective, the present work has selected four phases pre-lockdown and lockdown of 1st and 2nd cycles of lockdown taking average air quality index (NAQI) from Central Pollution Control Board (CPCB). The results clearly show that both the nationwide lockdown and the city-scale restriction are responsible for improving air quality in India's megacity Delhi, but the rate of improvement was higher (39%) during the first cycle of lockdown (nationwide) than during the second cycle of lockdown (city-scale). During city-scale lockdown, the disparity in NAQI between the core and the periphery is obvious. Due to the effect of economic activities surrounding Delhi, around 10 km of the city's interior has experienced high NAQI. The reason for the lower NAQI improvement during the second lockdown cycle is likely due to relief from initial fear following a year of cohabitation with COVID-19, partial vaccination, and partial relaxation in industrial sectors to avoid the economic hardships experienced during the first lockdown cycle.

3.
Environ Sci Pollut Res Int ; 29(19): 28083-28097, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34988818

RESUMEN

The present study attempted to investigate the changes in temperature conducive to fish habitability during the summer months in a hydrologically modified wetland following damming over a river. Satellite image-driven temperature and depth data calibrated with field data were used to analyse fish habitability and the presence of thermally optimum habitable zones in some fishes, such as labeo rohita, cirrhinus mrigala, tilapia fish, small shrimp, and catfish. The study was conducted both at the water's surface and at the optimum depth of survival. It is very obvious from the analysis that a larger part of the wetland has become an area that destroyed aquatic habitat during the post-dam period, and existing wetlands have suffered significant shallowing of water depth. This has resulted in a shrinking of the thermally optimum area of fish survival in relation to surface water temperature (from 100.09 to 74.24 km2 before the dam to 93.97 to 0 km2 after the dam) and an improvement in the optimum habitable condition in the comfortable depth niche of survival. In the post-dam period, it increased from 75.49 to 99.76%. Since the damming effect causes a 30.53 to 100% depletion of the optimum depth niche, improving the thermal environment has no effect on fish habitability. More water must be released from dams for restoration. Image-driven depth and temperature data calibrated with field information has been successfully applied in data sparse conditions, and it is further recommended in future work.


Asunto(s)
Cyprinidae , Humedales , Animales , Ecosistema , Peces , Ríos , Temperatura , Agua
4.
Environ Pollut ; 280: 116975, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33784565

RESUMEN

Global temperature rises in response to accumulating greenhouse gases is a well-debated issue in the present time. Historical records show that greenhouse gases positively influence temperature. Lockdown incident has brought an opportunity to justify the relation between greenhouse gas centric air pollutants and climatic variables considering a concise period. The present work has intended to explore the trend of air quality parameters, and air quality induced risk state since pre to during the lockdown period in reference to India and justifies the influence of pollutant parameters on climatic variables. Results showed that after implementation of lockdown, about 70% area experienced air quality improvement during the lockdown. The hazardous area was reduced from 7.52% to 5.17%. The spatial association between air quality components and climatic variables were not found very strong in all the cases. Still, statistically, a significant relation was observed in the case of surface pressure and moisture. From this, it can be stated that pollutant components can control the climatic components. This study recommends that pollution source management could be a partially good step for bringing climatic resilience of a region.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , India , Material Particulado/análisis , SARS-CoV-2
5.
Environ Sci Pollut Res Int ; 28(26): 34450-34471, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33651294

RESUMEN

Wetland risk assessment is a global concern especially in developing countries like Bangladesh. The present study explored the spatiotemporal dynamics of wetlands, prediction of wetland risk assessment. The wetland risk assessment was predicted based on ten selected parameters, such as fragmentation probability, distance to road, and settlement. We used M5P, random forest (RF), reduced error pruning tree (REPTree), and support vector machine (SVM) machine learning techniques for wetland risk assessment. The results showed that wetland areas at present are declining less than one-third of those in 1988 due to the construction of the dam at Farakka, which is situated at the upstream of the Padma River. The distance to the river and built-up area are the two most contributing drivers influencing the wetland risk assessment based on information gain ratio (InGR). The prediction results of machine learning models showed 64.48% of area by M5P, 61.75% of area by RF, 62.18% of area by REPTree, and 55.74% of area by SVM have been predicted as the high and very high-risk zones. The results of accuracy assessment showed that the RF outperformed than other models (area under curve: 0.83), followed by the SVM, M5P, and REPTree. Degradation of wetlands explored in this study demonstrated the negative effects on biodiversity. Therefore, to conserve and protect the wetlands, continuous monitoring of wetlands using high resolution satellite images, feeding with the ecological flow, confining built up area and agricultural expansion towards wetlands, and new wetland creation is essential for wetland management.


Asunto(s)
Ríos , Humedales , Algoritmos , Bangladesh , Conservación de los Recursos Naturales , Aprendizaje Automático , Medición de Riesgo
7.
J Clean Prod ; 297: 126674, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34975233

RESUMEN

Highly urbanized and industrialized Asansol Durgapur industrial belt of Eastern India is characterized by severe heat island effect and high pollution level leading to human discomfort and even health problems. However, COVID-19 persuaded lockdown emergency in India led to shut-down of the industries, traffic system, and day-to-day normal work and expectedly caused changes in air quality and weather. The present work intended to examine the impact of lockdown on air quality, land surface temperature (LST), and anthropogenic heat flux (AHF) of Asansol Durgapur industrial belt. Satellite images and daily data of the Central Pollution Control Board (CPCB) were used for analyzing the spatial scale and numerical change of air quality from pre to amid lockdown conditions in the study region. Results exhibited that, in consequence of lockdown, LST reduced by 4.02 °C, PM10 level decreased from 102 to 18 µg/m3 and AHF declined from 116 to 40W/m2 during lockdown period. Qualitative upgradation of air quality index (AQI) from poor to very poor state to moderate to satisfactory state was observed during lockdown period. To regulate air quality and climate change, many steps were taken at global and regional scales, but no fruitful outcome was received yet. Such lockdown (temporarily) is against economic growth, but it showed some healing effect of air quality standard.

8.
Environ Res ; 188: 109835, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32798952

RESUMEN

Air pollution has happened to be one of the mounting alarms to be concerned with in many Indian cities. COVID-19 epidemic endow with a unique opportunity to report the degree of air quality improvement due to the nationwide lockdown in 10 most polluted cities across the country. National Air Quality Index (NAQI) based on continuous monitoring records of seven criteria pollutants (i.e. common air pollutants with known health impacts e.g. PM10, PM2.5, CO, NO2, SO2, NH3 and O3) for a total of 59 stations across the cities, satellite image derived Aerosol Optical Depth (AOD) and few statistical tools are employed to derive the outcomes. NAQI results convey that 8 cities out of the 10 air quality restored to good to satisfactory category during the lockdown period. Within week+1 of the lockdown period, PM10 and PM2.5 concentrations have suppressed below the permissible limit in all cities. CO and NO2 have reduced to about -30% and -57% respectively during the lockdown period. Diurnal concentrations of PM10 and PM2.5 have dropped drastically on the very 4th day of lockdown and become consistent with minor hourly vacillation. In April 2020 the AOD amount was reduced to about 36% and 18% in contrast to April 2018 and April 2019 respectively. This add-on reporting of the possible recovery extent in air quality may help to guide alternative policy intervention in form of short term lockdown so as to testify whether this type of unconventional policy decisions may be put forward to attain a green environment. Because, despite numerous restoration plans, air pollution levels have risen unabated in these cities. However, detailed inventory needs to be focused on identifying the localized pollution hotspots (i.e. source contribution).


Asunto(s)
Contaminación del Aire , Betacoronavirus , Infecciones por Coronavirus , Pandemias , Neumonía Viral , COVID-19 , Ciudades , Monitoreo del Ambiente , Humanos , India , SARS-CoV-2
9.
Sci Rep ; 10(1): 10342, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32587299

RESUMEN

This study analyzes and forecasts the long-term Spatio-temporal changes in rainfall using the data from 1901 to 2015 across India at meteorological divisional level. The Pettitt test was employed to detect the abrupt change point in time frame, while the Mann-Kendall (MK) test and Sen's Innovative trend analysis were performed to analyze the rainfall trend. The Artificial Neural Network-Multilayer Perceptron (ANN-MLP) was employed to forecast the upcoming 15 years rainfall across India. We mapped the rainfall trend pattern for whole country by using the geo-statistical technique like Kriging in ArcGIS environment. Results show that the most of the meteorological divisions exhibited significant negative trend of rainfall in annual and seasonal scales, except seven divisions during. Out of 17 divisions, 11 divisions recorded noteworthy rainfall declining trend for the monsoon season at 0.05% significance level, while the insignificant negative trend of rainfall was detected for the winter and pre-monsoon seasons. Furthermore, the significant negative trend (-8.5) was recorded for overall annual rainfall. Based on the findings of change detection, the most probable year of change detection was occurred primarily after 1960 for most of the meteorological stations. The increasing rainfall trend had observed during the period 1901-1950, while a significant decline rainfall was detected after 1951. The rainfall forecast for upcoming 15 years for all the meteorological divisions' also exhibit a significant decline in the rainfall. The results derived from ECMWF ERA5 reanalysis data exhibit that increasing/decreasing precipitation convective rate, elevated low cloud cover and inadequate vertically integrated moisture divergence might have influenced on change of rainfall in India. Findings of the study have some implications in water resources management considering the limited availability of water resources and increase in the future water demand.

10.
Sci Total Environ ; 730: 139086, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32375105

RESUMEN

Amid the COVID-19 pandemic, a nationwide lockdown is imposed in India initially for three weeks from 24th March to 14th April 2020 and extended up to 3rd May 2020. Due to the forced restrictions, pollution level in cities across the country drastically slowed down just within few days which magnetize discussions regarding lockdown to be the effectual alternative measures to be implemented for controlling air pollution. The present article eventually worked on this direction to look upon the air quality scenario amidst the lockdown period scientifically with special reference to the megacity Delhi. With the aid of air quality data of seven pollutant parameters (PM10, PM2.5, SO2, NO2, CO, O3 and NH3) for 34 monitoring stations spread over the megacity we have employed National Air Quality Index (NAQI) to show the spatial pattern of air quality in pre and during-lockdown phases. The results demonstrated that during lockdown air quality is significantly improved. Among the selected pollutants, concentrations of PM10 and PM2.5 have witnessed maximum reduction (>50%) in compare to the pre-lockdown phase. In compare to the last year (i.e. 2019) during the said time period the reduction of PM10 and PM2.5 is as high as about 60% and 39% respectively. Among other pollutants, NO2 (-52.68%) and CO (-30.35%) level have also reduced during-lockdown phase. About 40% to 50% improvement in air quality is identified just after four days of commencing lockdown. About 54%, 49%, 43%, 37% and 31% reduction in NAQI have been observed in Central, Eastern, Southern, Western and Northern parts of the megacity. Overall, the study is thought to be a useful supplement to the regulatory bodies since it showed the pollution source control can attenuate the air quality. Temporary such source control in a suitable time interval may heal the environment.


Asunto(s)
Contaminación del Aire , Betacoronavirus , Infecciones por Coronavirus , Pandemias , Neumonía Viral , Contaminantes Atmosféricos , COVID-19 , Ciudades , Monitoreo del Ambiente , Humanos , India , Material Particulado , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...