Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38659934

RESUMEN

Estradiol (E2) and relaxin (Rln) are steroid and polypeptide hormones, respectively, with important roles in the female reproductive tract, including myometrium. Some actions of Rln, which are mediated by its membrane receptor RXFP1, require or are augmented by E2 signaling through its cognate nuclear steroid receptor, estrogen receptor alpha (ERα). In contrast, other actions of Rln act in opposition to the effects of E2. Here we explore the molecular and genomic mechanisms that underlie the functional interplay between E2 and Rln in the myometrium. We used both ovariectomized female mice and immortalized human myometrial cells expressing wild type or mutant ERα (hTERT-HM-ERα cells). Our results indicate that Rln attenuates the genomic actions and biological effects of estrogen in the myometrium and myometrial cells by reducing phosphorylation ERα on serine 118 (S118). Interestingly, we observed a potent inhibitory effect of Rln on the E2-dependent binding of ERα across the genome. The reduction in ERα binding was associated with changes in the hormone-regulated transcriptome, including a decrease in the E2-dependent expression of neighboring genes. The inhibitory effects of Rln cotreatment on the E2-dependent phosphorylation of ERα required the nuclear dual-specificity phosphatases DUSP1 and DUSP5. Moreover, the inhibitory effects of Rln were reflected in a concomitant inhibition of the E2-dependent contraction of myometrial cells. Collectively, our results identify a pathway that integrates Rln/RXFP1 and E2/ERα signaling, resulting in a convergence of membrane and nuclear signaling pathways to control genomic and biological outcomes.

2.
STAR Protoc ; 4(4): 102631, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37897730

RESUMEN

A challenge in studying cervical epithelial cell biology at the single-cell level is that differentiated subtypes, in particular mucus-secreting goblet cells, are sensitive to disassociating enzymes making isolation of all epithelial subpopulations difficult. Here we present a protocol to dissociate epithelia from non-pregnant and pregnant mouse cervical tissue for single-cell RNA-sequencing. We describe steps for harvesting cervices, preparing cervical tissue, dissociation of cervical cells, and viability checks. We then detail library preparation, sequencing, and procedure for data analysis. For complete details on the use and execution of this protocol, please refer to Cooley et al. (2023).1.


Asunto(s)
Análisis de Datos , Células Epiteliales , Femenino , Embarazo , Animales , Ratones , Epitelio , Diferenciación Celular , ARN/genética
3.
iScience ; 26(2): 105953, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36718364

RESUMEN

The cervical epithelium undergoes changes in proliferation, differentiation, and function that are critical to ensure fertility and maintain pregnancy. Here, we identify cervical epithelial subtypes in non-pregnant, pregnant, and in labor mice using single-cell transcriptome and spatial analysis. We identify heterogeneous subpopulations of epithelia displaying spatial and temporal specificity. Notably in pregnancy, two goblet cell subtypes are present in the most luminal layers with one goblet population expanding earlier in pregnancy than the other goblet population. The goblet populations express novel protective factors and distinct mucosal networks. Single-cell analysis in a model of cervical epithelial barrier disruption indicates untimely basal cell proliferation precedes the expansion of goblet cells with diminished mucosal integrity. These data demonstrate how the cervical epithelium undergoes continuous remodeling to maintain dynamic states of homeostasis in pregnancy and labor, and provide a framework to understand perturbations in epithelial health that increase the risk of premature birth.

4.
J Steroid Biochem Mol Biol ; 223: 106137, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35690241

RESUMEN

The remodeling of the cervix from a closed rigid structure to one that can open sufficiently for passage of a term infant is achieved by a complex series of molecular events that in large part are regulated by the steroid hormones progesterone and estrogen. Among hormonal influences, progesterone exerts a dominant role for most of pregnancy to initiate a loss of tissue strength yet maintain competence in a phase termed softening. Equally important are the molecular events that abrogate progesterone function in late pregnancy to allow a loss of tissue competence and strength during cervical ripening and dilation. In this review, we focus on current understanding by which progesterone receptor signaling for the majority of pregnancy followed by a loss/shift in progesterone receptor action at the end of pregnancy, collectively ensure cervical remodeling as necessary for successful parturition.


Asunto(s)
Cuello del Útero , Progesterona , Maduración Cervical , Cuello del Útero/fisiología , Estrógenos , Femenino , Humanos , Embarazo , Receptores de Progesterona
5.
Exp Anim ; 71(4): 451-459, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35613877

RESUMEN

The development of embryonic external genitalia (eExG) into characteristic male structures, such as urethra and penile erectile tissues, depends on 5α-dihydrotestosterone (DHT). Although the corpus cavernosum (CC) is well known as essential for erectile function in adults, its developmental process and its dependency on DHT have been unknown. To reveal the dimorphic formation of the murine CC from the embryonic stage, we first analyzed the production of the protein vascular endothelial growth factor receptor-2 (FLK1) via its expression (hereinafter referred as "expression of FLK1") and the expression of alpha-smooth muscle actin (ACTA2) and collagen type 1 (COL1A1) in developing external genitalia. The 5-α reductase type 2 encoded by the SRD5A2 gene has been suggested to be a crucial enzyme for male sexual differentiation, as it converts testosterone (T) into DHT in the local urogenital organs. In fact, SRD5A2 mutation results in decreased synthesis of DHT, which leads to various degrees of masculinized human external genitalia (ExG). We further investigated the expression profile of SRD5A2 during the formation of the murine CC. We observed that SRD5A2 was expressed in smooth muscle of the CC. To determine the role of SRD5A2 in CC formation, we analyzed the formation of erectile tissue in the male Srd5a2 KO mice and measured the levels of androgens in the ExG by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Intriguingly, there were no obvious defects in the CCs of male Srd5a2 KO mice, possibly due to increased T levels. The current study suggests possible redundant functions of androgens in CC development.


Asunto(s)
Dihidrotestosterona , Testosterona , Animales , Humanos , Masculino , Ratones , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Cromatografía Liquida , Dihidrotestosterona/metabolismo , Genitales/fisiología , Proteínas de la Membrana/genética , Espectrometría de Masas en Tándem , Testosterona/fisiología , Ratones Noqueados
6.
Biol Reprod ; 107(3): 741-751, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35594450

RESUMEN

The myometrium undergoes progressive tissue remodeling from early to late pregnancy to support fetal growth and transitions to the contractile phase to deliver a baby at term. Much of our effort has been focused on understanding the functional role of myometrial smooth muscle cells, but the role of extracellular matrix is not clear. This study was aimed to demonstrate the expression profile of sub-sets of genes involved in the synthesis, processing, and assembly of collagen and elastic fibers, their structural remodeling during pregnancy, and hormonal regulation. Myometrial tissues were isolated from non-pregnant and pregnant mice to analyze gene expression and protein levels of components of collagen and elastic fibers. Second harmonic generation imaging was used to examine the morphology of collagen and elastic fibers. Gene and protein expressions of collagen and elastin were induced very early in pregnancy. Further, the gene expressions of some of the factors involved in the synthesis, processing, and assembly of collagen and elastic fibers were differentially expressed in the pregnant mouse myometrium. Our imaging analysis demonstrated that the collagen and elastic fibers undergo structural reorganization from early to late pregnancy. Collagen and elastin were differentially induced in response to estrogen and progesterone in the myometrium of ovariectomized mice. Collagen was induced by both estrogen and progesterone. By contrast, estrogen induced elastin, but progesterone suppressed its expression. The current study suggests progressive extracellular matrix remodeling and its potential role in the myometrial tissue mechanical function during pregnancy and parturition.


Asunto(s)
Tejido Elástico , Elastina , Animales , Colágeno , Tejido Elástico/metabolismo , Elastina/metabolismo , Estrógenos/metabolismo , Femenino , Ratones , Miometrio/metabolismo , Embarazo , Progesterona/metabolismo , Progesterona/farmacología
7.
J Biomech Eng ; 144(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35348624

RESUMEN

Cervical remodeling is critical for a healthy pregnancy. The proper regulation of extracellular matrix (ECM) turnover leads to remodeling throughout gestation, transforming the tissue from a stiff material to a compliant, extensible, viscoelastic tissue prepared for delivery. Small leucine-rich proteoglycans (SLRPs) regulate structural fiber assembly in the cervical ECM and overall tissue material properties. To quantify the SLRPs' mechanical role in the cervix, whole cervix specimens from nonpregnant and late pregnant knockout mice of SLRPs, decorin and biglycan, were subjected to cyclic load-unload, ramp-hold, and load-to-failure mechanical tests. Further, a fiber composite material model, accounting for collagen fiber bundle waviness, was developed to describe the cervix's three-dimensional large deformation equilibrium behavior. In nonpregnant tissue, SLRP knockout cervices have the same equilibrium material properties as wild-type tissue. In contrast, the load-to-failure and ramp-hold tests reveal SLRPs impact rupture and time-dependent relaxation behavior. Loss of decorin in nonpregnant (NP) cervices results in inferior rupture properties. After extensive remodeling, cervical strength is similar between all genotypes, but the SLRP-deficient tissue has a diminished ability to dissipate stress during a ramp-hold. In mice with a combined loss of decorin and biglycan, the pregnant cervix loses its extensibility, compliance, and viscoelasticity. These results suggest that decorin and biglycan are necessary for crucial extensibility and viscoelastic material properties of a healthy, remodeled pregnant cervix.


Asunto(s)
Cuello del Útero , Matriz Extracelular , Animales , Biglicano/genética , Decorina/genética , Proteínas de la Matriz Extracelular/genética , Femenino , Ratones , Ratones Noqueados , Embarazo
8.
Matrix Biol ; 105: 53-71, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863915

RESUMEN

The cervix undergoes rapid and dramatic shifts in collagen and elastic fiber structure to achieve its disparate physiological roles of competence during pregnancy and compliance during birth. An understanding of the structure-function relationships of collagen and elastic fibers to maintain extracellular matrix (ECM) homeostasis requires an understanding of the mechanisms executed by non-structural ECM molecules. Small-leucine rich proteoglycans (SLRPs) play key functions in biology by affecting collagen fibrillogenesis and regulating enzyme and growth factor bioactivities. In the current study, we evaluated collagen and elastic fiber structure-function relationships in mouse cervices using mice with genetic ablation of decorin and/or biglycan genes as representative of Class I SLRPs, and lumican gene representative of Class II SLRP. We identified structural defects in collagen fibril and elastic fiber organization in nonpregnant mice lacking decorin, or biglycan or lumican with variable resolution of defects noted during pregnancy. The severity of collagen and elastic fiber defects was greater in nonpregnant mice lacking both decorin and biglycan and defects were maintained throughout pregnancy. Loss of biglycan alone reduced tissue extensibility in nonpregnant mice while loss of both decorin and biglycan manifested in decreased rupture stretch in late pregnancy. Collagen cross-link density was similar in the Class I SLRP null mice as compared to wild-type nonpregnant and pregnant controls. A broader range in collagen fibril diameter along with an increase in mean fibril spacing was observed in the mutant mice compared to wild-type controls. Collectively, these findings uncover functional redundancy and hierarchical roles of Class I and Class II SLRPs as key regulators of cervical ECM remodeling in pregnancy. These results expand our understating of the critical role SLRPs play to maintain ECM homeostasis in the cervix.


Asunto(s)
Proteoglicanos Pequeños Ricos en Leucina , Neoplasias del Cuello Uterino , Animales , Biglicano/genética , Biglicano/metabolismo , Cuello del Útero/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Decorina/genética , Decorina/metabolismo , Proteínas de la Matriz Extracelular/genética , Femenino , Fibromodulina , Humanos , Lumican/genética , Ratones , Embarazo , Proteoglicanos Pequeños Ricos en Leucina/genética
9.
Sci Rep ; 11(1): 15621, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341418

RESUMEN

Preterm birth risk is associated with early softening of the uterine cervix in pregnancy due to the accelerated remodeling of collagen extracellular matrix. Studies of mice model of pregnancy were performed with an imaging Mueller polarimeter at different time points of pregnancy to find polarimetric parameters for collagen scoring. Mueller matrix images of the unstained sections of mice uterine cervices were taken at day 6 and day 18 of 19-days gestation period and at different spatial locations through the cervices. The logarithmic decomposition of the recorded Mueller matrices mapped the depolarization, linear retardance, and azimuth of the optical axis of cervical tissue. These images highlighted both the inner structure of cervix and the arrangement of cervical collagen fibers confirmed by the second harmonic generation microscopy. The statistical analysis and two-Gaussians fit of the distributions of linear retardance and linear depolarization in the entire images of cervical tissue (without manual selection of the specific regions of interest) quantified the randomization of collagen fibers alignment with gestation time. At day 18 the remodeling of cervical extracellular matrix of collagen was measurable at the external cervical os that is available for the direct optical observations in vivo. It supports the assumption that imaging Mueller polarimetry holds promise for the fast and accurate collagen scoring in pregnancy and the assessment of the preterm birth risk.


Asunto(s)
Nacimiento Prematuro , Animales , Anisotropía , Cuello del Útero , Colágeno , Diagnóstico por Imagen , Femenino , Ratones , Embarazo
10.
Biol Reprod ; 105(5): 1257-1271, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34309663

RESUMEN

During gestation, the female reproductive tract must maintain pregnancy while concurrently preparing for parturition. Here, we explore the transitions in gene expression and protein turnover (fractional synthesis rates [FSR]) by which the cervix implements a transition from rigid to compliant. Shifts in gene transcription to achieve immune tolerance and alter epithelial cell programs begin in early pregnancy. Subsequently, in mid-to-late pregnancy transcriptional programs emerge that promote structural reorganization of the extracellular matrix (ECM). Stable isotope labeling revealed a striking slowdown of overall FSRs across the proteome on gestation day 6 that reverses in mid-to-late pregnancy. An exception was soluble fibrillar collagens and proteins of collagen assembly, which exhibit high turnover in nonpregnant cervix compared with other tissues and FSRs that continue throughout pregnancy. This finding provides a mechanism to explain how cross-linked collagen is replaced by newly synthesized, less cross-linked collagens, which allows increased tissue compliance during parturition. The rapid transition requires a reservoir of newly synthesized, less cross-linked collagens, which is assured by the high FSR of soluble collagens in the cervix. These findings suggest a previously unrecognized form of "metabolic flexibility" for ECM in the cervix that underlies rapid transformation in compliance to allow parturition.


Asunto(s)
Cuello del Útero/fisiología , Matriz Extracelular/metabolismo , Preñez/metabolismo , Proteoma , Transcriptoma , Animales , Femenino , Ratones , Embarazo
11.
Biomed Opt Express ; 12(4): 2236-2249, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33996226

RESUMEN

We propose an approach for discriminating fibrillar collagen fibers from elastic fibers in the mouse cervix in Mueller matrix microscopy using convolutional neural networks (CNN) and K-nearest neighbor (K-NN) for classification. Second harmonic generation (SHG), two-photon excitation fluorescence (TPEF), and Mueller matrix polarimetry images of the mice cervix were collected with a self-validating Mueller matrix micro-mesoscope (SAMMM) system. The components and decompositions of each Mueller matrix were arranged as individual channels of information, forming one 3-D voxel per cervical slice. The classification algorithms analyzed each voxel and determined the amount of collagen and elastin, pixel by pixel, on each slice. SHG and TPEF were used as ground truths. To assess the accuracy of the results, mean-square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) were used. Although the training and testing is limited to 11 and 5 cervical slices, respectively, MSE accuracy was above 85%, SNR was greater than 40 dB, and SSIM was larger than 90%.

12.
Ann Biomed Eng ; 49(8): 1874-1887, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33880630

RESUMEN

Throughout the estrus cycle, the extracellular matrix (ECM) and cervical smooth muscle cells (cSMC) coordinate to accomplish normal physiologic function in the non-pregnant cervix. While previous uniaxial experiments provide fundamental knowledge about cervical contractility and biomechanics, the specimen preparation is disruptive to native organ geometry and does not permit simultaneous assessment of circumferential and axial properties. Thus, a need remains to investigate cervical contractility and passive biomechanics within physiologic multiaxial loading. Biaxial inflation-extension experiments overcome these limitations by preserving geometry, ECM-cell interactions, and multiaxially loading the cervix. Utilizing in vivo pressure measurements and inflation-extension testing, this study presented methodology and examined maximum biaxial contractility and biomechanics in the nulliparous murine cervix. The study showed that increased pressure resulted in decreased contractile potential in the circumferential direction, however, axial contractility remained unaffected. Additionally, total change in axial stress ([Formula: see text]) increased significantly (p < 0.05) compared to circumferential stress ([Formula: see text]) with maximum contraction. However, passive stiffness was significantly greater (p < 0.01) in the circumferential direction. Overall, axial cSMC may have a critical function in maintaining cervical homeostasis during normal function. Potentially, a loss of axial contractility in the cervix during pregnancy may result in maladaptive remodeling such as cervical insufficiency.


Asunto(s)
Cuello del Útero/metabolismo , Matriz Extracelular/metabolismo , Contracción Muscular , Fuerza Muscular , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Fenómenos Biomecánicos , Femenino , Ratones
13.
Sci Transl Med ; 13(576)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441428

RESUMEN

Inflammation contributes to nearly 4 million global premature births annually. Here, we used a mouse model of intrauterine inflammation to test clinically used formulations, as well as engineered nanoformulations, for the prevention of preterm birth (PTB). We observed that neither systemic 17a-hydroxyprogesterone caproate (Makena) nor vaginal progesterone gel (Crinone) was sufficient to prevent inflammation-induced PTB, consistent with recent clinical trial failures. However, we found that vaginal delivery of mucoinert nanosuspensions of histone deacetylase (HDAC) inhibitors, in some cases with the addition of progesterone, prevented PTB and resulted in delivery of live pups exhibiting neurotypical development. In human myometrial cells in vitro, the P4/HDAC inhibitor combination both inhibited cell contractility and promoted the anti-inflammatory action of P4 by increasing progesterone receptor B stability. Here, we demonstrate the use of vaginally delivered drugs to prevent intrauterine inflammation-induced PTB resulting in the birth of live offspring in a preclinical animal model.


Asunto(s)
Preparaciones Farmacéuticas , Nacimiento Prematuro , Caproato de 17 alfa-Hidroxiprogesterona , Animales , Femenino , Nanomedicina , Embarazo , Nacimiento Prematuro/tratamiento farmacológico , Nacimiento Prematuro/prevención & control , Progesterona , Progestinas
14.
Biomed Opt Express ; 11(2): 688-698, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32133219

RESUMEN

An ultra-sensitive, wide-range force loading scheme is proposed for compression optical coherence elastography (OCE) that allows for the quantitative analysis of cervical tissue elasticity ex vivo. We designed a force loading apparatus featuring a water sink for minuscule incremental loading through a volume-controlled water droplet, from which the Young's modulus can be calculated by fitting the stress-strain curve. We validated the performance of the proposed OCE system on homogenous agar phantoms, showing the Young's modulus can be accurately estimated using this scheme. We then measured the Young's modulus of rodent cervical tissues acquired at different gestational ages, showing that the cervical rigidity of rodents was significantly dropped when entering the third trimester of pregnancy.

15.
Am J Pathol ; 190(2): 295-305, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31837289

RESUMEN

Preterm birth (PTB) affects nearly 15 million infants each year. Of these PTBs, >25% are a result of inflammation or infection. Animal models have improved our understanding of the mechanisms leading to PTB. Prior work has described induction of intrauterine inflammation in mice with a single injection of lipopolysaccharide (LPS). Herein, we have improved the reproducibility and potency of LPS in the model using two injections distal to the cervix. An in vivo imaging system revealed more uniform distribution of Evans Blue Dye using a double distal injection (DDI) approach compared with a single proximal injection (SPI). Endotoxin concentrations in vaginal lavage fluid from SPI dams were significantly higher than from DDI dams. At equivalent LPS doses, DDI consistently induced more PTB than SPI, and DDI showed a linear dose-response, whereas SPI did not. Gene expression in myometrial tissue revealed increased levels of inflammatory markers in dams that received LPS DDI compared with LPS SPI. The SPI group showed more significant overexpression in cervical remodeling genes, likely due to the leakage of LPS from the uterine horns through the cervix. The more reliable PTB induction and uniform uterine exposure provided by this new model will be useful for further studying fetal outcomes and potential therapeutics for the prevention of inflammation-induced PTB.


Asunto(s)
Modelos Animales de Enfermedad , Inflamación/complicaciones , Lipopolisacáridos/toxicidad , Miometrio/patología , Nacimiento Prematuro/etiología , Efectos Tardíos de la Exposición Prenatal/etiología , Animales , Femenino , Inflamación/inducido químicamente , Inflamación/patología , Ratones , Miometrio/efectos de los fármacos , Miometrio/inmunología , Embarazo , Nacimiento Prematuro/patología , Efectos Tardíos de la Exposición Prenatal/patología , Útero/efectos de los fármacos
16.
Interface Focus ; 9(5): 20190026, 2019 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-31485313

RESUMEN

The uterine cervix undergoes a complex remodelling process during pregnancy, characterized by dramatic changes in both extracellular matrix (ECM) structure and mechanical properties. Understanding the cervical remodelling process in a term or preterm birth will aid efforts for the prevention of preterm births (PTBs), which currently affect 14.8 million babies annually worldwide. Animal models of pregnancy, particularly rodents, continue to provide valuable insights into the cervical remodelling process, through the study of changes in ECM structure and mechanical properties at defined gestation time points. Currently, there is a lack of a collective, quantitative framework to relate the complex, nonlinear mechanical behaviour of the rodent cervix to changes in ECM structure. This review aims to fill this gap in knowledge by outlining the current understanding of cervical remodelling during pregnancy in rodent models in the context of solid biomechanics. Here we highlight the collective contribution of multiple mechanical studies which give evidence that cervical softening coincides with known ECM changes throughout pregnancy. Taken together, mechanical tests on tissue from pregnant rodents reveal the cervix's remarkable ability to soften dramatically during gestation to allow for a compliant tissue that can withstand damage and can dissipate mechanical loads.

17.
J Control Release ; 295: 74-86, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30597245

RESUMEN

Preterm birth (PTB) is a significant global problem, but few therapeutic options exist. Vaginal progesterone supplementation has been demonstrated to reduce PTB rates in women with a sonographic short cervix, yet there has been little investigation into the most effective dose or delivery form. Further, vaginal products like progesterone gel often contain excipients that cause local toxicity, irritation, and leakage. Here, we describe the development and characterization of a mucoinert vaginal progesterone nanosuspension formulation for improved drug delivery to the female reproductive tract. We compare the pharmacokinetics and pharmacodynamics to the clinical comparator progesterone gel in pregnant mice and demonstrate increased vaginal absorption and biodistribution via the uterine first-pass effect. Importantly, the unique plasma progesterone double peak observed in humans, reflecting recirculation from the uterus, was also observed in pregnant mice with vaginal dosing. We adapted a mouse model of progesterone withdrawal that was previously believed to be incompatible with testing the efficacy of exogenous progestins, and are first to demonstrate efficacy in preventing preterm birth with vaginal progesterone in this model. Further, improved vaginal progesterone delivery by the nanosuspension led to increased efficacy in PTB prevention. Additionally, we identified histological and transcriptional evidence of cervical and uterine toxicity with a single vaginal administration of the clinical gel that are absent after dosing with the mucoinert nanosuspension formulation. We demonstrate that a progesterone formulation that is designed for improved vaginal progesterone absorption and vaginal biocompatibility could be more effective for PTB prevention.


Asunto(s)
Nacimiento Prematuro/prevención & control , Progesterona/administración & dosificación , Progestinas/administración & dosificación , Administración Intravaginal , Animales , Animales Recién Nacidos , Femenino , Humanos , Ratones , Nanogeles/química , Vehículos Farmacéuticos/química , Embarazo , Progesterona/farmacocinética , Progesterona/uso terapéutico , Progestinas/farmacocinética , Progestinas/uso terapéutico , Distribución Tisular , Cremas, Espumas y Geles Vaginales/química
18.
Matrix Biol ; 78-79: 24-31, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29510230

RESUMEN

Cervical hyaluronan (HA) synthesis is robustly induced in late pregnancy in numerous species including women and mice. Recent evidence highlights the diverse and dynamic functions of HA in cervical biology that stem from its expression in the cervical stroma, epithelia and immune cells, changes in HA molecular weight and cell specific expression of HA binding partners. Mice deficient in HA in the lower reproductive tract confirm a structural role of HA to increase spacing and disorganization of fibrillar collagen, though this function is not critical for pregnancy and parturition. In addition, cervical HA depletion via targeted deletion of HA synthase genes, disrupts cell signaling required for the differentiation of epithelia and their mucosal and junctional barrier, resulting in increased susceptibility to ascending infection-mediated preterm birth. Finally the generation of HA disaccharides by bacterial hyaluronidases as made by Group B streptococcus can ligate toll like receptors TLR2/4 thus preventing appropriate inflammatory responses as needed to fight ascending infection and preterm birth. This review summarizes our current understanding of HA's novel and unique roles in cervical remodeling in the process of birth.


Asunto(s)
Cuello del Útero/metabolismo , Ácido Hialurónico/metabolismo , Parto/metabolismo , Nacimiento Prematuro/metabolismo , Animales , Diferenciación Celular , Femenino , Colágenos Fibrilares/metabolismo , Humanos , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/deficiencia , Ratones , Parto/inmunología , Embarazo , Nacimiento Prematuro/inmunología
19.
Biol Reprod ; 99(5): 922-937, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29733339

RESUMEN

Preterm birth affects approximately 1 out of every 10 births in the United States, leading to high rates of mortality and long-term negative health consequences. To investigate the mechanisms leading to preterm birth so as to develop prevention strategies, researchers have developed numerous mouse models of preterm birth. However, the lack of standard definitions for preterm birth in mice limits our field's ability to compare models and make inferences about preterm birth in humans. In this review, we discuss numerous mouse preterm birth models, propose guidelines for experiments and reporting, and suggest markers that can be used to assess whether pups are premature or mature. We argue that adoption of these recommendations will enhance the utility of mice as models for preterm birth.


Asunto(s)
Trabajo de Parto Prematuro/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Embarazo
20.
Biol Reprod ; 98(1): 63-74, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29161343

RESUMEN

Previous work has identified divergent mechanisms by which cervical remodeling is achieved in preterm birth (PTB) induced by hormone withdrawal (mifepristone) or lipopolysaccharide (LPS). Our current study aims to document how collagen architecture is modified to achieve premature cervical remodeling in mice treated with LPS as a model of infection-induced inflammation. Cervices were collected on gestation day (d) 15 from mice with premature cervical ripening induced by LPS and compared to d15 and d18 controls as well as a hormone withdrawal PTB model. Second harmonic generation (SHG) and electron microscopy were utilized for visualization of collagen morphology and ultrastructure. LPS-mediated premature cervical ripening is characterized by unique structural changes in collagen fiber morphology. LPS treatment increased the interfibrillar spacing of collagen fibrils. A preferential disruption of collagen fiber architecture in the subepithelial region compared to midstroma region was evidenced by increased pores lacking collagen signal in SHG images in the LPS-treated mice. Coinciding with this alteration, the infiltration of neutrophils was concentrated in the subepithelial stromal region as compared to midstromal region implicating the potential role of immune cells to extracellular matrix reorganization in inflammation-induced preterm cervical ripening. The current study demonstrates a preferential disorganization of collagen interfibrillar spacing and collagen fiber structure in LPS-mediated ripening.


Asunto(s)
Maduración Cervical/fisiología , Cuello del Útero/efectos de los fármacos , Cuello del Útero/fisiología , Colágeno/fisiología , Lipopolisacáridos/toxicidad , Animales , Maduración Cervical/efectos de los fármacos , Cuello del Útero/ultraestructura , Femenino , Ratones , Embarazo , Nacimiento Prematuro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA