Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Microsc Res Tech ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39376090

RESUMEN

PVC nanocomposite (NC) films with cubic CeO2 and Ni-doped CeO2 (NDC) have been prepared using a conventional solution-casting technique. The prepared films were characterized with FT-IR spectrometer, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The optical and thermal properties of the films were evaluated using a UV-visible spectrophotometer and TGA/DSC. The optical study revealed a decrease in optical band gap energies (4.19 to 4.06 eV) whereas the increase in other optical constraints such as optical conductivity, Urbach energy, dispersion energy, refractive index, and dielectric constant of PVC NCs than pristine PVC was observed. The XRD patterns showed the presence of cubic crystalline NDC with a relatively narrower principal diffraction peak in the PVC matrix and the nonexistence of unexpected vibrational peaks in the FTIR spectra of PVC NCs confirmed the successful incorporation of nanostructured CeO2 and NDC into PVC. Thermogravimetric analysis showed the higher thermal stability of NDC/PVC NC than PVC whereas differential scanning calorimetry declared no significant change in the glass transition temperature (Tg) of the NCs. Moreover, a good dispersion of Ni-doped CeO2 nanofiller was noticed in scanning electron micrographs.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125131, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39303339

RESUMEN

A unique heterojunction combining Bi2MoO6/CdS with Ni nanoparticles has been synthesized using the solvothermal method. This novel heterojunction, composed of NSs and NRs, was characterized using XRD, Raman, SEM, TEM, STEM, EDX, XPS, UV, and PL techniques. The synthesized heterojunctions exhibited substantial photocatalytic activity towards the degradation of 2-aminophenol, significantly outperforming their single-metal counterparts. The photocatalytic efficiency of the tripartite sheet and rod composite was about 26 and 16 times higher than that of the separate CdS sheets and rods for the reduction of 2-aminophenol. The primary reactive species for photocatalytic degradation were identified as the holes of Bi2MoO6 and the electrons of CdS. The Mott Schottky barrier established between CdS and Ni nanoparticles prevents the transfer of electrons from Ni nanoparticles back to CdS, allowing Ni nanoparticles to efficiently capture electrons and prevent any backward flow. This, in turn, results in enhanced photocatalytic activity. The improved photocatalytic capability is ascribed to the S-scheme heterojunction between Bi2MoO6/CdS, which promotes better separation of electrons and holes. The Mott Schottky barrier between CdS and Ni also ensures a more abundant electron supply for chemical reactions, minimizing potential losses. The 2D-2D nanostructure morphology of Bi2MoO6 and CdS extends the surface area, enhancing light utilization and providing more active reaction sites. The synthesized heterojunction demonstrated impressive stability over three cycles, highlighting its potential for recycling and repeated use.

3.
Sci Rep ; 14(1): 17893, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095369

RESUMEN

Diabetes mellitus (DM) is a rapidly prevailing disease throughout the world that poses boundless risk factors linked to several health problems. Vildagliptin is the standard dipeptidyl peptidase-4 (DPP-4) inhibitor type of medication that is used for the treatment of diabetes anti-hyperglycemic agent (anti-diabetic drug). The current study aimed to synthesize vildagliptin-loaded ZnO NPs for enhanced efficacy in terms of increased retention time minimizing side effects and increased hypoglycemic effects. Herein, Zinc Oxide (ZnO) nanoparticles (NPs) were constructed by precipitation method then the drug vildagliptin was loaded and drug loading efficiency was estimated by the HPLC method. X-ray diffraction analysis (XRD), UV-vis spectroscopy, FT-IR, scanning electron microscope (SEM), and EDX analysis were performed for the characterization of synthesized vildagliptin-loaded ZnO NPs. The UV-visible spectrum shows a distinct peak at 363 nm which confirms the creation of ZnO NPs and SEM showed mono-dispersed sphere-shaped NPs. EDX analysis shows the presence of desired elements along with the elemental composition. The physio-sorption studies, which used adsorption isotherms to assess adsorption capabilities, found that the Freundlich isotherm model explains the data very well and fits best. The maximum adsorption efficiency of 58.83% was obtained. Further, In vitro, anti-diabetic activity was evaluated by determining the α-amylase and DPP IV inhibition activity of the product formed. The formulation gave maximum inhibition of 82.06% and 94.73% of α-amylase and DPP IV respectively. While at 1000 µg/ml concentration with IC50 values of 24.11 µg/per ml and 42.94 µg/ml. The inhibition of α-amylase can be ascribed to the interactive effect of ZnO NPs and vildagliptin.


Asunto(s)
Hipoglucemiantes , Nanopartículas , Vildagliptina , Óxido de Zinc , Vildagliptina/química , Vildagliptina/farmacología , Óxido de Zinc/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Nanopartículas/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Difracción de Rayos X , Portadores de Fármacos/química , Espectroscopía Infrarroja por Transformada de Fourier , Nitrilos/química , Humanos
4.
Mol Biotechnol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177861

RESUMEN

The coronavirus known as SARS-CoV-2 has enveloped virions with single-stranded positive-sense RNA genome. It infects mammals, including humans, via the respiratory tract. The non-structural protein of coronavirus, main protease (3CLp) is a key enzyme in the disease's progression. This study aimed to screen phytochemicals derived from Calotropis Procera as potential drugs against 3CLp. Through database search, 50 phytochemicals were identified in the Calotropis sp. To evaluate the possible drug-like properties of these phytochemicals, the studies like, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) analysis, molecular docking and density functional theory (DFT) were performed. Furthermore, GC-MS was performed using water and ethanolic extracts from the plant leaves. The ADMET analysis and docking results showed 11 phytochemicals as probable drug candidates against 3CLp of SARS-CoV-2. All these phytochemicals showed ≥ - 4.3 kcal/mol binding affinity, similar to previously reported inhibitors. Furthermore, based on band energy gap, EHOMO, ELUMO, and DFT analyses, it was shown that these phytochemicals had a significant level of reactivity necessary for the interaction. Among all, the phytochemicals uscharin, voruscharin, frugoside, coroglaucigenin, and benzoylisolineolone may be considered the top 5 drug-like candidates against 3CLp. Furthermore, the selected phytochemicals may be employed for in vitro and in vivo studies for the advancement of a probable drug alongside SARS-CoV-2.

5.
Indian J Community Med ; 49(3): 549-554, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933783

RESUMEN

The coronavirus disease 2019 (COVID 19) pandemic brought substantial changes in the way doctors used to interact with patients. In the general practice, consultation over the phone has become a norm now. However, it is not well known how this new mode of consultation affected clinicians' practices. Objective of this study was to find out if doctors working in the general practices were trained enough for telephonic consultation and how this new mode of consultation affected their clinical practice in general. It was an online survey. Information was gathered by using an online questionnaire which was sent electronically to general practitioners (GPs) and general practitioner speciality trainees (GPSTs) working in the general practices based in Leicestershire. Data were analyzed by using software SPSS. Descriptive characteristics of participants were reported in terms of numbers and percentages, whereas Chi square test was run to assess if there is a difference between GPs and GPSTs in terms of their experience of remote consultations by telephone. The questionnaire response rate was 69.3% (n = 133/192). Of the total, 54.1% (n = 72/133) of participants were women. About 36% (n = 48/133) of the participants were GPSTs, whereas 64% (n = 85/133) were qualified GPs. Not having enough training for phone consultation, technical issues during consultation, inadequate supervision framework, difficulties in building therapeutic alliance with patients, making diagnosis and risk assessment, and increased duration of consultation were identified as issues. Similarly, concerns around patients' confidentiality and medico legal issues were highlighted. GPs and GPSTs reported similar difficulties. In conclusion, lack of training for the telephonic consultation has been identified as a unanimous issue along with other challenges to phone consultations. There is an urgent need to take measures to make telephone consultation more successful, enjoyable, and safe for patient care by addressing identified issues. Larger studies with representative samples are needed to increase generalizability of our findings.

6.
Luminescence ; 39(6): e4799, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38858760

RESUMEN

In this study, tellurium-doped and undoped metal oxide nanoparticles (NPs) (ZnO, Mn3O4, SnO2) are compared, and a practical method for their synthesis is presented. Nanocomposites were created using the coprecipitation process, and comparisons between the three material categories under study were made using a range of characterization methods. The produced materials were subjected to structural, morphological, elemental composition, and functional group analyses using XRD, FESEM in combination with EDS, and FTIR. The optical characteristics in terms of cutoff wavelength were evaluated using UV-visible spectroscopy. Catalyzing the breakdown of methylene blue (MB) dye, the isolated nanocomposites demonstrated very consistent behavior when utilized as catalysts. Regarding both doped and undoped ZnO NPs, the maximum percentage of degradation was found to be 98% when exposed to solar Escherichia coli and Staphylococcus aureus, which stand for gram-positive and gram-negative bacteria, respectively, and were chosen as model strains for both groups using the disk diffusion technique in the context of in vitro antibacterial testing. Doped and undoped ZnO NPs exhibited greater antibacterial efficacy, with significant inhibition zones measuring 31.5 and 37.8 mm, compared with other metal oxide NPs.


Asunto(s)
Antibacterianos , Escherichia coli , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Telurio , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Telurio/química , Telurio/farmacología , Staphylococcus aureus/efectos de los fármacos , Catálisis , Nanopartículas del Metal/química , Escherichia coli/efectos de los fármacos , Procesos Fotoquímicos , Azul de Metileno/química , Azul de Metileno/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología , Manganeso/química , Manganeso/farmacología , Estaño/química , Estaño/farmacología , Tamaño de la Partícula , Óxidos/química , Óxidos/farmacología
7.
Luminescence ; 39(5): e4758, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712530

RESUMEN

The ability of heterogeneous photocatalysis to effectively remove organic pollutants from wastewater has shown great promise as a tool for environmental remediation. Pure zinc ferrites (ZnFe2O4) and magnesium-doped zinc ferrites (Mg@ZnFe2O4) with variable percentages of Mg (0.5, 1, 3, 5, 7, and 9 mol%) were synthesized via hydrothermal route and their photocatalytic activity was checked against methylene blue (MB) taken as a model dye. FTIR, XPS, BET, PL, XRD, TEM, and UV-Vis spectroscopy were used for the identification and morphological characterization of the prepared nanoparticles (NPs) and nanocomposites (NCs). The 7% Mg@ZnFe2O4 NPs demonstrated excellent degradation against MB under sunlight. The 7% Mg@ZnFe2O4 NPs were integrated with diverse contents (10, 50, 30, and 70 wt.%) of S@g-C3N4 to develop NCs with better activity. When the NCs were tested to degrade MB dye, it was revealed that the 7%Mg@ZnFe2O4/S@g-C3N4 NCs were more effective at utilizing solar energy than the other NPs and NCs. The synergistic effect of the interface formed between Mg@ZnFe2O4 and S@g-C3N4 was primarily responsible for the boosted photocatalytic capability of the NCs. The fabricated NCs may function as an effective new photocatalyst to remove organic dyes from wastewater.


Asunto(s)
Compuestos Férricos , Azul de Metileno , Compuestos de Nitrógeno , Energía Solar , Contaminantes Químicos del Agua , Zinc , Catálisis , Contaminantes Químicos del Agua/química , Compuestos Férricos/química , Azul de Metileno/química , Zinc/química , Magnesio/química , Fotólisis , Procesos Fotoquímicos , Colorantes/química , Nanocompuestos/química , Grafito/química , Aguas Residuales/química , Nitrilos/química
8.
Microsc Res Tech ; 87(8): 1965-1973, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38590279

RESUMEN

This study displays the effect of reduced graphene oxide (rGO) nanofiller and polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene-grafted maleic anhydride (SEBS-g-MA) on the optical, thermal, and mechanical features of expanded polystyrene (EPS). First, the thin films of pristine EPS and composites were prepared using solution cast method. The prepared films were subjected to fourier-transform infrared (FTIR), SEM, UV-visible spectrophotometer, thermogravimetric analysis/differential scanning calorimetry, and universal testing machine for structural, morphological, optical, thermal, and mechanical characterizations. Optical study revealed a significant increase in refractive index and absorption of composites than EPS. Indirect band-gap energy of EPS (~4.08 eV) was reduced to ~1.61 eV for rGO composite and ~ 2.23 eV for composite composed of rGO and SEBS-g-MA. Thermal analyses presented improvement in characterization temperatures such as T10, T50, Tp, Tm, and Tg of composites, which ultimately lead to the thermal stability of prepared composites than pristine EPS. Stress-strain curves displayed higher yield strength (46.62 MPa), Young's modulus (96.29 MPa), and strain at break (0.54%) for EPS+rGO composite than pure EPS having stress at break (1.01 MPa), Young's modulus (12.44 MPa), and strain at break (0.08%). Moreover, ductility with relatively higher strain at break (0.61%) and lower Young's modulus (79.32 MPa) and yield strength (32.98 MPa) was noticed in EPS+rGO+SEBS-g-MA composite than EPS+rGO composite film. Morphological analysis revealed a change in globular morphology of EPS and inhomogeneous dispersion of rGO in EPS to homogeneously dispersed rGO in EPS matrix without globules owing to the addition of SEBS-g-MA. The increase in compatibility of EPS and rGO due to SEBS-g-MA was also observed in FTIR spectra. RESEARCH HIGHLIGHTS: Here, the solution casting approach was used to create the composite film of EPS and rGO with globules of various sizes. After adding SEBS-g-MA, the shape altered to globular free films exhibiting homogenous dispersion of rGO in EPS matrix. An optical investigation showed that composite materials had a significantly higher refractive index and absorption than EPS. The optical, thermal, and mechanical investigations suggest that the produced composites may be a great substitute for virgin EPS, allowing for a wider range of applications.

9.
Analyst ; 149(11): 3245-3262, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38687206

RESUMEN

Artificial superhydrophobic surfaces that do not absorb water, like the lotus leaf, show tremendous promise in numerous applications. However, superhydrophobic surfaces are rarely used because of their low stability and endurance. A stable organic superhydrophobic surface (SHS) composed of novel morphology Ag-nanoparticles (NPs) has been fabricated on a copper alloy via etching, immersion, spraying, and annealing treatment, along with a static water contact angle (WCA) of 158 ± 1° and sliding angle (SA) less than 2°. The surface texture, composition, and morphology of the substrate surfaces were explored by using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and DFT-based Ag atom distribution. The anti-corrosion study of non-coated and Ag-NP-coated copper alloy was undertaken using electrochemical impedance spectroscopy. Ag-NPs +SA@SHS enhanced the corrosion resistance as compared with bare Cu alloy. The water droplet rolled down the coated Cu alloy, removed the chalk powder from the surface, and indicated an excellent self-cleaning function. Photodegradation of Congo red (CR) and methylene blue (MB) dye samples was assessed by measuring the absorbance through UV-Visible spectrophotometry, where the Ag-NPs coated on the copper alloy were used as a catalyst. The performance of the SHS@Ag-NPs in the aqueous solution was 99.31% and 98.12% for industrial pollutants (CR and MB), with degradation rates of 5.81 × 10-2 s-1 and 5.89 × 10-2 s-1, respectively. These findings demonstrated a simple, rapid, and low-energy fabrication technique for SHS@Ag-NPs. This research reveals a valuable approach for the fabrication of SHS@Ag-NPs on various substrates to extend the superhydrophobic surfaces with ultra-fast self-healing properties, for outdoor applications such as anti-corrosion, for an innovative approach for the remediation of polluted water treatment, and for industrial applications.

10.
ACS Appl Mater Interfaces ; 16(22): 28342-28352, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38636480

RESUMEN

Solid-state electrolytes (SSEs) based on sulfides have become a subject of great interest due to their superior Li-ion conductivity, low grain boundary resistance, and adequate mechanical strength. However, they grapple with chemical instability toward moisture hypersensitivity, which decreases their ionic conductivity, leading to more processing requirements. Herein, a Li9.8GeP1.7Sb0.3S11.8I0.2 (LGPSSI) superionic conductor is designed with a Li+ conductivity of 6.6 mS cm-1 and superior air stability based on hard and soft acids and bases (HSAB) theory. The introduction of optimal antimony (Sb) and iodine (I) into the Li10GeP2S12 (LGPS) structure facilitates fast Li-ion migration with low activation energy (Ea) of 20.33 kJ mol-1. The higher air stability of LGPSSI is credited to the strategic substitution of soft acid Sb into (Ge/P)S4 tetrahedral sites, examined by Raman and X-ray photoelectron spectroscopy techniques. Relatively lower acidity of Sb compared to phosphorus (P) realizes a stronger Sb-S bond, minimizing the evolution of toxic H2S (0.1728 cm3 g-1), which is ∼3 times lower than pristine LGPS when LGPSSI is exposed to moist air for 120 min. The NCA//Li-In full cell with a LGPSSI superionic conductor delivered the first discharge capacity of 209.1 mAh g-1 with 86.94% Coulombic efficiency at 0.1 mA cm-2. Furthermore, operating at a current density of 0.3 mA cm-2, LiNbO3@NCA/LGPSSI/Li-In cell demonstrated an exceptional reversible capacity of 117.70 mAh g-1, retaining 92.64% of its original capacity over 100 cycles.

11.
Luminescence ; 39(3): e4724, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38523053

RESUMEN

For white light-rendering research activities, interpretation by using colored emitting materials is an alternative approach. But there are issues in designing the white color emitting materials. Particularly, differences in thermal and decay properties of discrete red, green, and blue emitting materials led to the quest for the search of a single-phased material, able to emit primary colors for white light generation. The current study is an effort to design a simple, single-phase, and cost-effective material with the tunable emission of primary colors by a series of Mg1-xBaxAl2O4:Mn2+ nanopowders. Doping of manganese ion (Mn2+) in the presence of the larger barium cation (Ba2+) at tetrahedral-sites of the spinel magnesium aluminate (MgAl2O4) structure led to the creation of antisite defects. Doped samples were found to have lower bandgaps compared with MgAl2O4, and hybridization of 3d-orbitals of Mn2+ with O(2p), Mg(2s)/Al(2s3p) was found to be responsible for narrowing the bandgap. The distribution of cations at various sites at random results in a variety of electronic transitions between the valance band and oxygen vacancies as well as electron traps produced the antisite defects. The suggested compositions might be used in white light applications since they have three emission bands with centers at 516 nm (green), 464 nm (blue) and 622 nm (red) at an excitation wavelength of 380 nm. A detailed discussion to analyze the effects of the larger cationic radius of Ba2+ on the lattice strain, unit cell parameters, and cell volumes using X-ray diffraction analysis is presented.


Asunto(s)
Óxido de Aluminio , Óxido de Magnesio , Cristalografía por Rayos X , Electrónica
12.
Heliyon ; 10(6): e27755, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545210

RESUMEN

In Pakistan, the origin of the indigenous cockfighting chicken (ICC) or gamecock population is unknown. However, it is speculated that this might have been associated with domestication, an event linked to recreational, entertainment (cockfighting), religious or ornamental activities. This study aims to understand the origin and genetic diversity of the ICC population in Pakistan. A total of 185 ICC population and 10 captive Indian red junglefowl (Gallus gallus murghi) were analyzed for genetic diversity indices and phylogenetic reconstruction using a 397 bp of mtDNA D-loop region. It is reported that a total of 43 haplotypes from 38 polymorphic nucleotide sites. The haplotype and nucleotide diversity are also estimated in the range of 0.643-0.909, and 0.00585-0.01575, respectively. The total genetic diversity within the population was 91.52%. Four mitochondrial haplogroups A, B, C and D were identified by median-joining network analysis, two of them have high percentages, haplogroup D (81.6%) and A (15.1%). Phylogenetic analysis showed that the ICC population of Pakistan and Gallus gallus murghi shared haplogroup D. The results of this study showed that sub-haplogroup D17a05, has significantly high haplotype diversity and percentage as compared to previously published studies, this indicated that Pakistan might be one of the centres of domestication for chicken, as it is considered that Southeast Asia is the centre of domestication. Frequencies of Haplogroup A also indicate South-North indices. This research work showed that the indigenous cockfighting chicken population of Pakistan is genetically introgressed from Gallus gallus murghi, and significant variations could be attributed to the underlying differences in the geographics, selection pressures, introgression, and regional practices; and multiple origins of cockfighting chickens' populations around the world which reflected the past trading routes between human communities and civilizations.

13.
Luminescence ; 39(2): e4693, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403841

RESUMEN

The construction of SnO2 nanoparticles (NPs), specifically Te-doped SnO2 NPs, using a simple and economical co-precipitation technique has been thoroughly described in this work. NH3 served as the reducing agent in this procedure, whilst polyethylene glycol served as the capping agent. The primary goals of our work were to investigate the physicochemical properties of the synthesized SnO2 NPs and assess their potential use as antibacterial agents and photocatalysts. Scanning electron microscopy-energy dispersive X-ray, ultraviolet light, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and other analytical techniques were used to thoroughly analyze the NPs. Based on the full width at half maximum of the most noticeable peaks in the XRD spectrum, the Debye-Scherrer equation was used to calculate the crystallite sizes, which indicated the presence of a single tetragonal SnO2 phase. Particularly noteworthy was the exceptional photocatalytic activity of graphene-assisted Te-doped SnO2 NPs, achieving an impressive decomposition efficiency of up to 98% in the photo-oxidation of methylene blue. Furthermore, our investigation delved into the antibacterial attributes of the synthesized SnO2 NPs against Escherichia coli and Staphylococcus aureus, demonstrating inhibitory effects on both bacteria strains. This suggests potential applications for these NPs in various environmental and medical contexts.


Asunto(s)
Nanopartículas del Metal , Azul de Metileno , Fotólisis , Azul de Metileno/química , Telurio , Nanopartículas del Metal/química , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
14.
Sci Rep ; 14(1): 2897, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316840

RESUMEN

The investigation focused on creating and studying a new 2D-2D S-scheme CdS/g-C3N4 heterojunction photocatalyst. Various techniques examined its structure, composition, and optical properties. This included XRD, XPS, EDS, SEM, TEM, HRTEM, DRS, and PL. The heterojunction showed a reduced charge recombination rate and more excellent stability, helping to lessen photocorrosion. This was due to photogenerated holes moving more quickly out of the CdS valence band. The interface between g-C3N4 and CdS favored a synergistic charge transfer. A suitable flat band potential measurement supported enhanced reactive oxygen species (ROS) generation in degrading 4-nitrophenol and 2-nitrophenol. This resulted in remarkable degradation efficiency of up to 99% and mineralization of up to 79%. The findings highlighted the practical design of the new 2D-2D S-scheme CdS/g-C3N4 heterojunction photocatalyst and its potential application in various energy and environmental settings, such as pollutant removal, hydrogen production, and CO2 conversion.

15.
Sci Rep ; 14(1): 2499, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291095

RESUMEN

Diabetes is a serious health issue that can be a great risk factor related to numerous physical problems. A class of drugs "Gliflozin" especially Sodium Glucose Co. Transporter 2 was inhibited by a novel drug, which is known as "empagliflozin". While ZnO nanoparticles (NPs) had considerable promise for combating diabetes, it was employed in the treatment and management of type-2 diabetes mellitus. The new drug empagliflozin was initially incorporated into Zinc Oxide NPs in this study using the surface physio-sorption technique, and the degree of drug adsorption was assessed using the HPLC method. The tailored product was characterized by using the FTIR, EDX, Ultraviolet-Visible, XRD and SEM techniques. With an average particle size of 17 nm, SEM revealed mono-dispersion of NPs and sphere-like form. The Freundlich isotherm model best fits and explains the data for the physio-sorption investigation, which examined adsorption capabilities using adsorption isotherms. The enzymes α-amylase and α-glucosidase, which are involved in the human metabolism of carbohydrates, were used in the in-vitro anti-diabetic assays. It was discovered that the composite showed the highest levels of 81.72 and 92.77% inhibition of -α-amylase and -glucosidase at an absolute concentration of 1000 µg per ml with IC50 values of 30.6 µg per ml and 72 µg per ml.


Asunto(s)
Compuestos de Bencidrilo , Diabetes Mellitus Tipo 2 , Glucósidos , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , alfa-Amilasas , Antibacterianos/farmacología , Extractos Vegetales
16.
Vaccines (Basel) ; 11(10)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37896974

RESUMEN

A comprehensive, up-to-date systematic review (SR) of the new-onset rheumatic immune-mediated inflammatory diseases (R-IMIDs) following COVID-19 vaccinations is lacking. Therefore, we investigated the demographics, management, and prognosis of new R-IMIDs in adults following SARS-CoV-2 vaccinations. A systematic literature search of Medline, Embase, Google Scholar, LitCovid, and Cochrane was conducted. We included any English-language study that reported new-onset R-IMID in adults following the post-COVID-19 vaccination. A total of 271 cases were reported from 39 countries between January 2021 and May 2023. The mean age of patients was 56 (range 18-90), and most were females (170, 62.5%). Most (153, 56.5%) received the Pfizer BioNTech COVID-19 vaccine. Nearly 50% of patients developed R-IMID after the second dose of the vaccine. Vasculitis was the most prevalent clinical presentation (86, 31.7%), followed by connective tissue disease (66, 24.3%). The mean duration between the vaccine's 'trigger' dose and R-IMID was 11 days. Most (220, 81.2%) received corticosteroids; however, 42% (115) received DMARDs such as methotrexate, cyclophosphamide, tocilizumab, anakinra, IV immunoglobulins, plasma exchange, or rituximab. Complete remission was achieved in 75 patients (27.7%), and 137 (50.6%) improved following the treatment. Two patients died due to myositis. This SR highlights that SARS-CoV-2 vaccines may trigger R-IMID; however, further epidemiology studies are required.

17.
Heliyon ; 9(7): e18052, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483771

RESUMEN

The Asiatic black bear (Ursus thibetanus) is considered one of the largest carnivores inhabiting different territories including coniferous and broad-leaved forests, extending from sea level to the elevation of 4300 m. The Kaghan and Siran Valleys in Pakistan's District Mansehra were the location of the current study. To evaluate the altitudinal distribution and seasonal movement of Asiatic black bears in the region, we used three approaches (sign distribution survey, questionnaire-based survey, and scat collecting). A total of 1858 bear signs were observed during the field survey, the highest number of signs was dig marks (1213) followed by plant uprooting. Dig marks (MER: 7.574) were observed repeatedly in each potential site of both valleys followed by plant uprooting (MER: 1.594). Similarly, the altitudinal distribution of black bears was determined through the frequency of signs concerning elevation (m). Elevation of the study area ranged from 1300 to 3500 m and the most abundant population was recorded at the elevation of 2501-3000 m followed by 2001-2500 m. About 52% of local communities encountered black bears during the summer season in the field followed by Spring (23%.8) and winter (15.3%). Manshi Reserver forest (24.5%) from Kaghan and Panjul Reserve forest (31.6) from Siran Valley are the potential summer migratory spots. Eleven scat samples were collected with a 0.103 encounter rate (ER). Most of the scats (about 70%) were observed within the maize crop field in the summer season at low elevation, while just 30% of the scat was observed in the winter season in the forest.

18.
Syst Rev ; 12(1): 92, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37269003

RESUMEN

BACKGROUND: Intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections play a key role in treating a range of macular diseases. The effectiveness of these therapies is dependent on patients' adherence (the extent to which a patient takes their medicines as per agreed recommendations from the healthcare provider) and persistence (continuation of the treatment for the prescribed duration) to their prescribed treatment regimens. The aim of this systematic review was to demonstrate the need for further investigation into the prevalence of, and factors contributing to, patient-led non-adherence and non-persistence, thus facilitating improved clinical outcomes. METHODS: Systematic searches were conducted in Google Scholar, Web of Science, PubMed, MEDLINE, and the Cochrane Library. Studies in English conducted before February 2023 that reported the level of, and/or barriers to, non-adherence or non-persistence to intravitreal anti-VEGF ocular disease therapy were included. Duplicate papers, literature reviews, expert opinion articles, case studies, and case series were excluded following screening by two independent authors. RESULTS: Data from a total of 409,215 patients across 52 studies were analysed. Treatment regimens included pro re nata, monthly and treat-and-extend protocols; study durations ranged from 4 months to 8 years. Of the 52 studies, 22 included a breakdown of reasons for patient non-adherence/non-persistence. Patient-led non-adherence varied between 17.5 and 35.0% depending on the definition used. Overall pooled prevalence of patient-led treatment non-persistence was 30.0% (P = 0.000). Reasons for non-adherence/non-persistence included dissatisfaction with treatment results (29.9%), financial burden (19%), older age/comorbidities (15.5%), difficulty booking appointments (8.5%), travel distance/social isolation (7.9%), lack of time (5.8%), satisfaction with the perceived improvement in their condition (4.4%), fear of injection (4.0%), loss of motivation (4.0%), apathy towards eyesight (2.5%), dissatisfaction with facilities 2.3%, and discomfort/pain (0.3%). Three studies found non-adherence rates between 51.6 and 68.8% during the COVID-19 pandemic, in part due to fear of exposure to COVID-19 and difficulties travelling during lockdown. DISCUSSION: Results suggest high levels of patient-led non-adherence/non-persistence to anti-VEGF therapy, mostly due to dissatisfaction with treatment results, a combination of comorbidities, loss of motivation and the burden of travel. This study provides key information on prevalence and factors contributing to non-adherence/non-persistence in anti-VEGF treatment for macular diseases, aiding identification of at-risk individuals to improve real-world visual outcomes. Improvements in the literature can be achieved by establishing uniform definitions and standard timescales for what constitutes non-adherence/non-persistence. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020216205.


Asunto(s)
Inhibidores de la Angiogénesis , Oftalmopatías , Ranibizumab , Humanos , Inhibidores de la Angiogénesis/uso terapéutico , Ranibizumab/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Cumplimiento de la Medicación , Oftalmopatías/tratamiento farmacológico
19.
Healthcare (Basel) ; 10(11)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36421639

RESUMEN

Pharmacists deliver pharmaceutical care in many different healthcare settings and are well-placed to support the prevention of stroke. However, their role and impact in this area is ill-defined. This systematic review aims to explore the pharmacists' role in stroke prevention. Nine databases were searched for studies reporting pharmacist interventions in the management of primary and secondary ischaemic stroke prevention. Study quality was evaluated through Cochrane Risk of Bias and Joanna Briggs Institute (JBI) appraisal tools where possible. A narrative review was conducted and meta-analysis performed for studies with comparable outcomes. Of the 834 initial articles, 31 met inclusion criteria. Study designs were varied and included controlled trials, observational studies, audit reports and conference abstracts. Seven studies addressed the pharmacists' role in primary prevention and 24 in secondary prevention. Pharmacist interventions reported were diverse and often multifactorial. Overall, 20 studies reported significant improvement in outcomes. Meta-analysis showed pharmacist interventions in emergency care significantly improved the odds of achieving thrombolytic therapy door to needle (DTN) times ≤45 min, odds ratio: 2.69 (95% confidence interval (CI): 1.95−3.72); p < 0.001. The pharmacists' role is varied and spans the stroke treatment pathway, with the potential for a positive impact on a range of health-related outcomes.

20.
Nat Commun ; 13(1): 7341, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446823

RESUMEN

Allogeneic natural killer (NK) cell adoptive transfer is a promising treatment for several cancers but is less effective for the treatment of multiple myeloma. In this study, we report on quadruple gene-engineered induced pluripotent stem cell (iPSC)-derived NK cells designed for mass production from a renewable source and for dual targeting against multiple myeloma through the introduction of an NK cell-optimized chimeric antigen receptor (CAR) specific for B cell maturation antigen (BCMA) and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity when combined with therapeutic anti-CD38 antibodies. Additionally, these cells express a membrane-bound interleukin-15 fusion molecule to enhance function and persistence along with knock out of CD38 to prevent antibody-mediated fratricide and enhance NK cell metabolic fitness. In various preclinical models, including xenogeneic adoptive transfer models, quadruple gene-engineered NK cells consistently demonstrate durable antitumor activity independent of exogenous cytokine support. Results presented here support clinical translation of this off-the-shelf strategy for effective treatment of multiple myeloma.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Células Asesinas Naturales , Antígeno de Maduración de Linfocitos B , Receptores de Células Asesinas Naturales , Subfamília D de Receptores Similares a Lectina de las Células NK
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...