Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(10): e31082, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813143

RESUMEN

The reaction of sulfamethoxazolehydrazonoyl chloride with thiosemicarbazones, bis-thiosemicarbazones, or 4-amino-3-mercapto-1,2,4-triazole in dioxane in the presence of triethylamine as a basic catalyst at reflux resulted in the regioselective synthesis of thiazoles and bis-thiazoles linked to azo-sulfamethoxazole as novel hybrid molecules. The structures of the new compounds were confirmed using a range of spectra. Each compound's antibacterial properties were evaluated using the agar well-diffusion technique, and most of them demonstrated significant potency. In silico investigations revealed that the described compounds had strong interactions with the binding sites of MurE ligase, tyrosyl-tRNA synthetase, and dihydropteroate synthase, demonstrating inhibitory activity.

2.
J Clin Med ; 12(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068333

RESUMEN

BACKGROUND: Multiparametric renal Magnetic Resonance Imaging (MRI) provides a non-invasive method to assess kidney structure and function, but longitudinal studies are limited. METHODS: A total of 22 patients with CKD category G3-4 (estimated glomerular filtration rate (eGFR) 15-59 mL/min/1.73 m2) were recruited. Annual 3T multiparametric renal MRI scans were performed, comprising total kidney volume (TKV), longitudinal relaxation time (T1), apparent diffusion coefficient (ADC), Arterial Spin Labelling, and Blood Oxygen Level Dependent relaxation time (T2*), with 15 patients completing a Year 2 scan. CKD progression over 2 years was defined as eGFR_slope ≥ -5 mL/min/1.73 m2/year. RESULTS: At baseline, T1 was higher (cortex p = 0.05, medulla p = 0.03) and cortex perfusion lower (p = 0.015) in participants with subsequent progression versus stable eGFR. A significant decrease in TKV and ADC and an increase in cortex T1 occurred in progressors at Year 1 and Year 2, with a significant decrease in perfusion in progressors only at Year 2. The only decline in the stable group was a reduction in TKV. There was no significant change in cortex or medulla T2* at Year 1 or Year 2 for progressors or stable participants. CONCLUSION: Lower renal cortex perfusion and higher T1 in the cortex and medulla may predict CKD progression, while renal cortex T1, TKV, and ADC may be useful to monitor progression. This study provides pilot data for future large-scale studies.

3.
Appl Environ Microbiol ; 89(9): e0082623, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37655899

RESUMEN

Comparative proteomics and untargeted metabolomics were combined to study the physiological and metabolic adaptations of Rhodococcus qingshengii IGTS8 under biodesulfurization conditions. After growth in a chemically defined medium with either dibenzothiophene (DBT) or MgSO4 as the sulfur source, many differentially produced proteins and metabolites associated with several metabolic and physiological processes were detected including the metabolism of carbohydrates, amino acids, lipids, nucleotides, vitamins, protein synthesis, transcriptional regulation, cell envelope biogenesis, and cell division. Increased production of the redox cofactor mycofactocin and associated proteins was one of the most striking adaptations under biodesulfurization conditions. While most central metabolic enzymes were less abundant in the presence of DBT, a key enzyme of the glyoxylate shunt, isocitrate lyase, was up to 26-fold more abundant. Several C1 metabolism and oligotrophy-related enzymes were significantly more abundant in the biodesulfurizing culture. R. qingshengii IGTS8 exhibited oligotrophic growth in liquid and solid media under carbon starvation. Moreover, the oligotrophic growth was faster on the solid medium in the presence of DBT compared to MgSO4 cultures. In the DBT culture, the cell envelope and phospholipids were remodeled, with lower levels of phosphatidylethanolamine and unsaturated and short-chain fatty acids being the most prominent changes. Biodesulfurization increased the biosynthesis of osmoprotectants (ectoine and mannosylglycerate) as well as glutamate and induced the stringent response. Our findings reveal highly diverse and overlapping stress responses that could protect the biodesulfurizing culture not only from the associated sulfate limitation but also from chemical, oxidative, and osmotic stress, allowing efficient resource management. IMPORTANCE Despite decades of research, a commercially viable bioprocess for fuel desulfurization has not been developed yet. This is mainly due to lack of knowledge of the physiology and metabolism of fuel-biodesulfurizing bacteria. Being a stressful condition, biodesulfurization could provoke several stress responses that are not understood. This is particularly important because a thorough understanding of the microbial stress response is essential for the development of environmentally friendly and industrially efficient microbial biocatalysts. Our comparative systems biology studies provide a mechanistic understanding of the biology of biodesulfurization, which is crucial for informed developments through the rational design of recombinant biodesulfurizers and optimization of the bioprocess conditions. Our findings enhance the understanding of the physiology, metabolism, and stress response not only in biodesulfurizing bacteria but also in rhodococci, a precious group of biotechnologically important bacteria.

4.
Mini Rev Med Chem ; 23(7): 821-851, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36545712

RESUMEN

Viruses are still the most prevalent infectious pathogens on a worldwide scale, with many of them causing life-threatening illnesses in humans. Influenza viruses, because of their significant morbidity and mortality, continue to pose a major threat to human health. According to WHO statistics, seasonal influenza virus epidemics are predicted to cause over 2 million severe illness cases with high death rates yearly. The whole world has been suffering from the COVID-19 epidemic for two years and is still suffering so far, and the deaths from this virus have exceeded three million cases. Because the great majority of viral infections do not have a specific medication or vaccination, discovering novel medicines remains a vital task. This review covers reports in the patent literature from 1980 to the end of 2021 on the antiviral activities of pyrimidine moieties. The patent database, SciFinder, was used to locate patent applications. A large variety of pyrimidine molecules have been produced and tested for antiviral activity over the last decade. These molecules were reported to inhibit a wide range of viruses, including influenza virus, respiratory syncytial virus, rhinovirus, dengue virus, herpes virus, hepatitis B and C, and human immunodeficiency virus. The cytotoxicity of the developed pyrimidine derivatives was tested in almost all reported studies and the selectivity index was calculated to show the selectivity and safety of such molecules. From the remarkable activity of pyrimidine compounds as antivirals for several dangerous viruses, we expect that these derivatives will be used as potent drugs in the very near future.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico
5.
Front Microbiol ; 13: 896718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35859748

RESUMEN

Sponges are among the most ancient animals harboring complex microbial communities with potential applications in biotechnology. The Arabian Gulf is a thermally stressed enclosed body of water located in an arid region where sponges and their halobionts are understudied. This study combined 16S rRNA next-generation gene amplicon sequencing and cultivation techniques to explore the abundance and diversity of sponge-associated bacteria. Culture-independent techniques showed the associations of more than 25 bacterial phyla with Amphimedon sp., Chondrilla australiensis, Haliclona sp., and Niphates spp. Regarding cultivable bacteria, 315 bacterial isolates associated with the sponge Haliclona sp. were cultivated; these isolates were affiliated with the phyla Proteobacteria and Firmicutes and were distributed among six bacterial genera. Selected strains of Bacillus, Ferrimonas, Pseudovibrio, Shewanella, Spongiobacter, and Vibrio were tested for antimicrobial activity against indicator microorganisms and protease enzyme production. Seven Bacillus strains exhibited weak to moderate growth inhibition against Bacillus subtilis, Staphylococcus aureus, and Candida albicans. Furthermore, 29 different strains of Bacillus, Ferrimonas, Shewanella, and Vibrio exhibited different degrees of positive protease activity. In addition, cultivated strains of Bacillus, Shewanella, Pseudovibrio, and Vibrio were tested for their biomineralization abilities. Herein we report for the first time the isolation of biomineralizing bacteria from sponge tissue where eleven bacterial isolates produced different shapes of calcium carbonate crystals on agar. Our observations shed light on the diversity and biotechnological potentials of sponges-associated bacteria inhabiting one of the world's hottest seas.

6.
Med Chem ; 18(10): 1100-1108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422226

RESUMEN

AIMS: The study aims to synthesize bioactive hybrid pharmacophores (thiazole ring and imidazo[2,1-b]thiazole system) by incorporating them into one biological assessment molecular system. BACKGROUND: A literature survey revealed that various imidazo[2,1-b]thiazoles, thiazoles, and hydrazones have powerful antimycobacterial activity. OBJECTIVE: This study demonstrates the effectiveness of molecular hybridization and the scope for imidazo[2,1-b]thiazole-hydrazone-thiazoles to develop as promising antimycobacterial agents. METHODS: Several imidazo[2,1-b]thiazole-hydrazine-thiazoles 5a-g, 7a,b, 9a,b, 11a,b, 13, and 15a,b were generated using a molecular hybridization strategy and assessed against Mycobacterium tuberculosis (ATCC 25618) for their in vitro antituberculous activity. RESULTS: Derivative 7b (MIC = 0.98 µg/mL) has shown the most promising antimycobacterial activity among the series tested. Brief structure-activity relationship studies found that the thiazole of chlorophenyl or pyridine, or coumarin had a significant relation with the antimycobacterial activity. CONCLUSION: The promising antimycobacterial activity of compound 7b compared with the reference drug suggests that this compound may contribute as a lead compound in the search for new potential antimycobacterial agents.


Asunto(s)
Mycobacterium tuberculosis , Tiazoles , Antibacterianos , Hidrazonas , Relación Estructura-Actividad
7.
Microbiol Spectr ; 9(2): e0069221, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34468196

RESUMEN

Sulfur metabolism in fuel-biodesulfurizing bacteria and the underlying physiological adaptations are not understood, which has impeded the development of a commercially viable bioprocess for fuel desulfurization. To fill these knowledge gaps, we performed comparative proteomics and untargeted metabolomics in cultures of the biodesulfurization reference strain Rhodococcus qingshengii IGTS8 grown on either inorganic sulfate or the diesel-borne organosulfur compound dibenzothiophene as a sole sulfur source. Dibenzothiophene significantly altered the biosynthesis of many sulfur metabolism proteins and metabolites in a growth phase-dependent manner, which enabled us to reconstruct the first experimental model for sulfur metabolism in a fuel-biodesulfurizing bacterium. All key pathways related to assimilatory sulfur metabolism were represented in the sulfur proteome, including uptake of the sulfur sources, sulfur acquisition, and assimilatory sulfate reduction, in addition to biosynthesis of key sulfur-containing metabolites such as S-adenosylmethionine, coenzyme A, biotin, thiamin, molybdenum cofactor, mycothiol, and ergothioneine (low-molecular weight thiols). Fifty-two proteins exhibited significantly different abundance during at least one growth phase. Sixteen proteins were uniquely detected and 47 proteins were significantly more abundant in the dibenzothiophene culture during at least one growth phase. The sulfate-free dibenzothiophene-containing culture reacted to sulfate starvation by restricting sulfur assimilation, enforcing sulfur-sparing, and maintaining redox homeostasis. Biodesulfurization triggered alternative pathways for sulfur assimilation different from those operating in the inorganic sulfate culture. Sulfur metabolism reprogramming and metabolic switches in the dibenzothiophene culture were manifested in limiting sulfite reduction and biosynthesis of cysteine, while boosting the production of methionine via the cobalamin-independent pathway, as well as the biosynthesis of the redox buffers mycothiol and ergothioneine. The omics data underscore the key role of sulfur metabolism in shaping the biodesulfurization phenotype and highlight potential targets for improving the biodesulfurization catalytic activity via metabolic engineering. IMPORTANCE For many decades, research on biodesulfurization of fossil fuels was conducted amid a large gap in knowledge of sulfur metabolism and its regulation in fuel-biodesulfurizing bacteria, which has impeded the development of a commercially viable bioprocess. In addition, lack of understanding of biodesulfurization-associated metabolic and physiological adaptations prohibited the development of efficient biodesulfurizers. Our integrated omics-based findings reveal the assimilatory sulfur metabolism in the biodesulfurization reference strain Rhodococcus qingshengii IGTS8 and show how sulfur metabolism and oxidative stress response were remodeled and orchestrated to shape the biodesulfurization phenotype. Our findings not only explain the frequently encountered low catalytic activity of native fuel-biodesulfurizing bacteria but also uncover unprecedented potential targets in sulfur metabolism that could be exploited via metabolic engineering to boost the biodesulfurization catalytic activity, a prerequisite for commercial application.


Asunto(s)
Metabolómica , Proteómica , Rhodococcus/genética , Rhodococcus/metabolismo , Azufre/metabolismo , Fenómenos Bioquímicos , Cisteína/biosíntesis , Glicopéptidos , Inositol , Familia de Multigenes , Tiofenos/metabolismo
8.
Clin Kidney J ; 14(8): 1969-1976, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34345421

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is associated with a marked increase in mortality as well as subsequent chronic kidney disease (CKD) and end-stage kidney disease. We performed multiparametric magnetic resonance imaging (MRI) with the aim of identifying potential non-invasive MRI markers of renal pathophysiology in AKI and during recovery. METHODS: Nine participants underwent inpatient MRI scans at time of AKI; seven had follow-up scans at 3 months and 1 year following AKI. Multiparametric renal MRI assessed total kidney volume (TKV), renal perfusion using arterial spin labelling, T1 mapping and blood oxygen level-dependent (BOLD) R2* mapping. RESULTS: Serum creatinine concentration had recovered to baseline levels at 1-year post-AKI in all participants. At the time of AKI, participants had increased TKV, increased cortex/medulla T1 and reduced cortical perfusion compared with the expected ranges in healthy volunteers and people with CKD. TKV and T1 values decreased over time after AKI and returned to expected values in most but not all patients by 1 year. Cortical perfusion improved to a lesser extent and remained below the expected range in the majority of patients by 1-year post-AKI. BOLD R2* data showed a non-significant trend to increase over time post-AKI. CONCLUSIONS: We observed a substantial increase in TKV and T1 during AKI and a marked decrease in cortical perfusion. Despite biochemical recovery at 1-year post-AKI, MRI measures indicated persisting abnormalities in some patients. We propose that such patients may be more likely to have further AKI episodes or progress to CKD and further longitudinal studies are required to investigate this. .

9.
Artículo en Inglés | MEDLINE | ID: mdl-33909547

RESUMEN

A Gram-stain-positive, strictly aerobic, spore-forming, rod-shaped and non-motile bacterium designated strain SIJ1T was obtained from tidal flat sediment collected from the northern shore of Kuwait Bay, northwest of the Arabian Gulf. Strain SIJ1T grew optimally at 30 °C and pH 7-8 in the presence of 6 % (w/v) NaCl. The cell-wall peptidoglycan was based on meso-diaminopimelic acid and an unsaturated menaquinone with seven isoprene units (MK-7) was the predominant respiratory quinone. It contained anteiso-C15 : 0, iso-C16 : 0 and iso-C15 : 0 as the major fatty acids and ribose as the major whole-cell sugar. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipid, an unidentified glycolipid, phosphoglycolipid and an unidentified lipid. Phylogenetic analysis based on 16S rRNA genes revealed that SIJ1T showed a distinct evolutionary lineage within the Firmicutes. The DNA G+C content was 43.1 mol% and the full genome analysis for strain SIJ1T showed that it had a genome size of 3 989 945 bp and contained 4085 predicted protein-encoding genes. The SIJ1T annotated genome showed more stress resistance encoding genes in comparison to its closely related strains. The amino acid identity and average nucleotide identity data for the whole genome proved that strain SIJ1T does indeed represent a novel genus. The strain was distinguishable from the phylogenetically related genera through differences in several phenotypic properties. On the basis of the phenotypic, phylogenetic and genetic data, strain SIJ1T represents a novel genus and species in the family Bacillaceae, for which the name Litoribacterium kuwaitense gen. nov., sp. nov. is proposed. The type strain is SIJ1T (=DSM 28862T=LMG 28316T).


Asunto(s)
Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Bacillaceae/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , Bahías , Pared Celular/química , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Glucolípidos/química , Kuwait , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Drug Des Devel Ther ; 15: 659-677, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633443

RESUMEN

INTRODUCTION: Hybrid drug design has developed as a prime method for the development of novel anticancer therapies that can theoretically solve much of the pharmacokinetic disadvantages of traditional anticancer drugs. Thus a number of studies have indicated that thiazole-thiophene hybrids and their bis derivatives have important anticancer activity. Mammalian Rab7b protein is a member of the Rab GTPase protein family that controls the trafficking from endosomes to the TGN. Alteration in the Rab7b expression is implicated in differentiation of malignant cells, causing cancer. METHODS: 1-(4-Methyl-2-(2-(1-(thiophen-2-yl) ethylidene) hydrazinyl) thiazol-5-yl) ethanone was used as building block for synthesis of novel series of 5-(1-(2-(thiazol-2-yl) hydrazono) ethyl) thiazole derivatives. The bioactivities of the synthesized compounds were evaluated with respect to their antitumor activities against MCF-7 tumor cells using MTT assay. Computer-aided docking protocol was performed to study the possible molecular interactions between the newly synthetic thiazole compounds and the active binding site of the target protein Rab7b. Moreover, the in silico prediction of adsorption, distribution, metabolism, excretion (ADME) and toxicity (T) properties of synthesized compounds were carried out using admetSAR tool. RESULTS: The results obtained showed that derivatives 9 and 11b have promising activity (IC50 = 14.6 ± 0.8 and 28.3 ± 1.5 µM, respectively) compared to Cisplatin (IC50 = 13.6 ± 0.9 µM). The molecular docking analysis reveals that the synthesized compounds are predicted to be fit into the binding site of the target Rab7b. In summary, the synthetic thiazole compounds 1-17 could be used as potent inhibitors as anticancer drugs. CONCLUSION: Promising anticancer activity of compounds 9 and 11 compared with cisplatin reference drug suggests that these ligands may contribute as lead compounds in search of new anticancer agents to combat chemo-resistance.


Asunto(s)
Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Tiazoles/farmacología , Tiosemicarbazonas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/química , Tiosemicarbazonas/síntesis química , Tiosemicarbazonas/química
11.
Biotechnol Rep (Amst) ; 28: e00572, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33365264

RESUMEN

We enriched and characterized a biodesulfurizing consortium (designated as MG1). The MG1 consortium reduced the total sulfur of diesel by 25 % and utilized each of the diesel-born compounds dibenzothiophene (DBT), benzothiophene (BT), 4-methyldibenzothiophene (4-MDBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) as a sole sulfur source. MiSeq analysis revealed compositional shifts in the MG1 community according to the type of the sulfur source. A DBT-grown MG1 culture had Klebsiella, Pseudomonas, Rhodococcus and Sphingomonas as the most abundant genera. When diesel or 4, 6-DMDBT was provided as a sole sulfur source, Klebsiella and Pseudomonas spp. were the most abundant. In the BT culture, Rhodococcus spp. were the key biodesulfurizers, while Klebsiella, Pseudomonas and Sphingomonas spp. dominated the 4-MDBT-grown consortium. MG1 also utilized 2-hydroxybiphenyl (the product of the 4S biodesulfurization pathway) where Pseudomonas spp. uniquely dominated the consortium. The data improves our understanding of the sulfur source-driven structural adaptability of biodesulfurizing consortia.

12.
Bioorg Chem ; 105: 104354, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33091672

RESUMEN

Three series of nanosized-formazan analogues were synthesized from the reaction of dithiazone with various types of α-haloketones (ester and acetyl substituted hydrazonoyl chlorides and phenacyl bromides) in sodium ethoxide solution. The structure and the crystal size of the new synthesized derivatives were assured based on the spectral analyses, XRD and SEM data. The antibacterial and antifungal activities were evaluated by agar diffusion technique. The results showed mild to moderate antibacterial activities and moderate to potent antifungal activities. Significant antifungal activities were observed for four derivatives 3a, 3d, 5a and 5g on the pathogenic fungal strains; Aspergillus flavus and Candida albicans with inhibition zone ranging from 16 to 20 mm. Molecular docking simulations of the synthesized compounds into leucyl-tRNA synthetase editing domain of Candida albicans suggested that most formazan analogues can fit deeply forming stable complexes in the active site. Furthermore, we utilized the docking approach to examine the potential of these compounds to inhibit SARS-CoV-2 3CLpro. The results were very promising verifying these formazan analogues as a hopeful antiviral agents.


Asunto(s)
Antiinfecciosos/síntesis química , Proteasas 3C de Coronavirus/metabolismo , Formazáns/química , Simulación del Acoplamiento Molecular , Nanoestructuras/química , SARS-CoV-2/metabolismo , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Aspergillus flavus/efectos de los fármacos , Sitios de Unión , COVID-19/patología , COVID-19/virología , Candida albicans/efectos de los fármacos , Dominio Catalítico , Proteasas 3C de Coronavirus/química , Formazáns/metabolismo , Formazáns/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/metabolismo , SARS-CoV-2/aislamiento & purificación
13.
Molecules ; 25(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126630

RESUMEN

BACKGROUND: Imidazo[2,1-b]thiazole scaffolds were reported to possess various pharmaceutical activities. RESULTS: The novel compound named methyl-2-(1-(3-methyl-6-(p-tolyl)imidazo[2,1-b]thiazol-2-yl)ethylidene)hydrazine-1-carbodithioate 3 acted as a predecessor molecule for the synthesis of new thiadiazole derivatives incorporating imidazo[2,1-b]thiazole moiety. The reaction of 3 with the appropriate hydrazonoyl halide derivatives 4a-j and 7-9 had produced the respective 1,3,4-thiadiazole derivatives 6a-j and 10-12. The chemical composition of all the newly synthesized derivatives were confirmed by their microanalytical and spectral data (FT-IR, mass spectrometry, 1H-NMR and 13C-NMR). All the produced novel compounds were screened for their anti-proliferative efficacy on hepatic cancer cell lines (HepG2). In addition, a computational molecular docking study was carried out to determine the ability of the synthesized thiadiazole molecules to interact with active site of the target Glypican-3 protein (GPC-3). Moreover, the physiochemical properties of the synthesized compounds were derived to determine the viability of the compounds as drug candidates for hepatic cancer. CONCLUSION: All the tested compounds had exhibited good anti-proliferative efficacy against hepatic cancer cell lines. In addition, the molecular docking results showed strong binding interactions of the synthesized compounds with the target GPC-3 protein with lower energy scores. Thus, such novel compounds may act as promising candidates as drugs against hepatocellular carcinoma.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Imidazoles/química , Simulación del Acoplamiento Molecular , Tiadiazoles/química , Tiadiazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Glipicanos/química , Glipicanos/metabolismo , Células Hep G2 , Humanos , Conformación Proteica , Tiadiazoles/síntesis química , Tiadiazoles/metabolismo
14.
Eur J Med Chem ; 208: 112752, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32947227

RESUMEN

Novel 2-indolinone thiazole hybrids were designed and synthesized as VEGFR-2 inhibitors based on sunitinib, an FDA-approved anticancer drug. The proposed structures of the prepared 2-indolinone thiazole hybrids were confirmed based on their spectral data and CHN analyses. The target compounds were screened in vitro for their anti-VEGFR-2 activity. All tested compounds exhibited a potent submicromolar inhibition of VEGFR-2 kinase with IC50 values ranging from 0.067 to 0.422 µM, relative to sunitinib reference drug (IC50 = 0.075 ± 0.002 µM). Compounds 5, 15a, 15b, 17, 19c displayed excellent VEGFR-2 inhibitory activity, comparable or nearly equipotent to sunitinib. Compound 13b stood out as the most potent against VEGFR-2 showing IC50 value of 0.067 ± 0.002 µM, lower than that of sunitinib. In addition, the most potent derivatives were assessed for their anticancer activity against two renal cancer cell lines. Compound 13b (IC50 = 3.9 ± 0.13 µM) was more potent than sunitinib (IC50 = 4.93 ± 0.16 µM) against CAKI-1 cell line. Moreover, thiazole 15b displayed excellent anticancer activity against CAKI-1 cell line (IC50 = 3.31 ± 0.11 µM), superior to that of sunitinib (IC50 = 4.93 ± 0.16 µM). Thiazole 15b was also equipotent to sunitinib (IC50 = 1.23 ± 0.04 µM) against A498 cell line. Besides, compound 15b revealed a safety profile much better than that of sunitinib against normal human renal cells. Furthermore, a docking study revealed a proper fitting of the most active compounds into the ATP binding site of VEGFR-2, rationalizing their potent anti-VEGFR-2 activity.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Renales/tratamiento farmacológico , Oxindoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Sitios de Unión , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Oxindoles/síntesis química , Oxindoles/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Sunitinib/química , Tiazoles/síntesis química , Tiazoles/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
Front Microbiol ; 11: 1417, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733398

RESUMEN

Rhodococcus strain IGTS8 is the most extensively studied model bacterium for biodesulfurization of fossil fuels via the non-destructive sulfur-specific 4S pathway. This strain was initially assigned to Rhodococcus rhodochrous and later to Rhodococcus erythropolis thus making its taxonomic status debatable and reflecting the limited resolution of methods available at the time. In this study, phylogenomic analyses of the whole genome sequences of strain IGTS8 and closely related rhodococci showed that R. erythropolis and Rhodococcus qingshengii are very closely related species, that Rhodococcus strain IGTS8 is a R. qingshengii strain and that several strains identified as R. erythropolis should be re-classified as R. qingshengii. The genomes of strains assigned to these species contain potentially novel biosynthetic gene clusters showing that members of these taxa should be given greater importance in the search for new antimicrobials and other industrially important biomolecules. The plasmid-borne dsz operon encoding fossil fuel desulfurization enzymes was present in R. qingshengii IGTS8 and R. erythropolis XP suggesting that it might be transferable between members of these species.

16.
ACS Omega ; 5(17): 10160-10166, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32391503

RESUMEN

A group of novel 1,4-bis(3,5-dialkyl-4H-1,2,4-triazol-4-yl)benzene and 5-aryltriaz-1-en-1-yl-1-phenyl-1H-pyrazole-4-carbonitrile derivatives have been successfully synthesized and characterized by spectroscopic analyses. The triazenes were obtained in moderate yield by a coupling reaction between 5-aminopyrazol-4-carbonitrile and aryl diazonium chlorides, and their structures were confirmed by detecting the CN functional group in both IR and 13C NMR spectra. Conversely, the novel 1,4-bis(3,5-dialkyl-4H-1,2,4-triazol-4-yl)benzene derivatives were obtained using a previously unreported and facile pathway starting with p-phenylenediamine with selected triethyl orthoalkylates and then hydrazine monohydrate, followed by refluxing in triethyl orthoalkylates. The structure of the methyl derivative was confirmed by X-ray analysis. The synthesized compounds were tested and evaluated as antimicrobial agents.

17.
Nephrol Dial Transplant ; 35(6): 955-964, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31257440

RESUMEN

BACKGROUND: Multi-parametric magnetic resonance imaging (MRI) provides the potential for a more comprehensive non-invasive assessment of organ structure and function than individual MRI measures, but has not previously been comprehensively evaluated in chronic kidney disease (CKD). METHODS: We performed multi-parametric renal MRI in persons with CKD (n = 22, 61 ± 24 years) who had a renal biopsy and measured glomerular filtration rate (mGFR), and matched healthy volunteers (HV) (n = 22, 61 ± 25 years). Longitudinal relaxation time (T1), diffusion-weighted imaging, renal blood flow (phase contrast MRI), cortical perfusion (arterial spin labelling) and blood-oxygen-level-dependent relaxation rate (R2*) were evaluated. RESULTS: MRI evidenced excellent reproducibility in CKD (coefficient of variation <10%). Significant differences between CKD and HVs included cortical and corticomedullary difference (CMD) in T1, cortical and medullary apparent diffusion coefficient (ADC), renal artery blood flow and cortical perfusion. MRI measures correlated with kidney function in a combined CKD and HV analysis: estimated GFR correlated with cortical T1 (r = -0.68), T1 CMD (r = -0.62), cortical (r = 0.54) and medullary ADC (r = 0.49), renal artery flow (r = 0.78) and cortical perfusion (r = 0.81); log urine protein to creatinine ratio (UPCR) correlated with cortical T1 (r = 0.61), T1 CMD (r = 0.61), cortical (r = -0.45) and medullary ADC (r = -0.49), renal artery flow (r = -0.72) and cortical perfusion (r = -0.58). MRI measures (cortical T1 and ADC, T1 and ADC CMD, cortical perfusion) differed between low/high interstitial fibrosis groups at 30-40% fibrosis threshold. CONCLUSION: Comprehensive multi-parametric MRI is reproducible and correlates well with available measures of renal function and pathology. Larger longitudinal studies are warranted to evaluate its potential to stratify prognosis and response to therapy in CKD.


Asunto(s)
Pruebas de Función Renal/métodos , Riñón/fisiopatología , Imagen por Resonancia Magnética/métodos , Circulación Renal , Insuficiencia Renal Crónica/patología , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/metabolismo , Reproducibilidad de los Resultados
18.
Med Chem ; 16(6): 761-773, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31333140

RESUMEN

BACKGROUND: One of the most successful reagents used in the synthesis of the reactive enaminone is DMF-DMA, but it is very expensive with harmful effects on the human health and reacts with special compounds to generate the enaminone such as active methylene centers. AIM: In this article, we synthesized a new ketenaminal by simple method with inexpensive reagents (through desulfurization in diphenylether). METHODS: Thus, a novel reactive ketenaminal (enaminone) was synthesized from the desulfurization of 2-((2-(4-chlorophenyl)-2-oxoethyl)thio)-5,7-bis(4-methoxyphenyl)pyrido[2,3-d]pyrimidin- 4(3H)-one with diphenylether. The starting keteneaminal was coupled with diazotized anilines via the known coupling conditions to give a new series of 2-(4-chlorophenyl)-1-(2-(arylhydrazono)-2- oxoethyl)-5,7-bis(4-methoxy-phenyl)pyrido[2,3-d]pyrimidin-4(1H)-ones. RESULTS: The structures of the new compounds were elucidated based on their IR, 1H-NMR, 13CNMR, and Mass spectra. Moreover, the potency of these compounds as antimicrobial agents has been evaluated. The results showed that some of the products have high activity nearly equal to that of the used standard antibiotic. Additionally, the docking study was done to get the binding mode of the synthesized compounds with the binding site of the DHFR enzyme. The results of molecular docking of the synthesized arylhydrazono compounds are able to fit in DHFR binding site with binding energies ranging from -4.989 to -8.178 Kcal/mol. CONCLUSION: Our goal was achieved in this context by the synthesis of new ketenaminal from inexpensive reagents, which was utilized in the preparation of bioactive arylhydrazone derivatives.


Asunto(s)
Antibacterianos/síntesis química , Antifúngicos/síntesis química , Hidrocarburos Cíclicos/síntesis química , Hidrocarburos Cíclicos/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Bacterias/efectos de los fármacos , Candida albicans/efectos de los fármacos , Hidrocarburos Cíclicos/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
19.
Mar Pollut Bull ; 150: 110639, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31706724

RESUMEN

Little is known about the degradability of oxo-biodegradable polyethylene (OXO-PE) and its surface fouling bacterial communities in the marine environment. The degradation of OXO-PE, PE and polyethylene terephthalate (PET) was compared at two depths (2 m and 6 m) in the Arabian Gulf. Scanning electron microcopy (SEM) revealed more fissure formation on OXO-PE and PE than on PET, indicating physical degradation. The formation of hydroxyl groups and carbonyl bonds, by Fourier-transform infrared spectroscopy (FTIR), suggests chemical degradation of OXO-PE. Plastisphere bacterial communities on OXO-PE and PE were different than on PET. Proteobacteria, Bacteriodetes and Planctomycetes were detected on all plastics, however, sequences of Alteromonas and Zoogloea were OXO-PE-specific suggesting a possible involvement of these bacterial genera in OXO-PE degradation. We conclude that OXO-PE shows increased signs of degradation with time owing to the combination of abiotic and biotic processes, and its degradation is higher in the benthic than in the planktonic zone.


Asunto(s)
Biodegradación Ambiental , Incrustaciones Biológicas , Plancton/fisiología , Polietileno , Contaminantes del Agua/metabolismo , Plásticos , Tereftalatos Polietilenos , Espectroscopía Infrarroja por Transformada de Fourier
20.
Extremophiles ; 23(6): 765-781, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31576454

RESUMEN

Microbes can be found in hypersaline environments forming diverse populations with complex ecological interactions. Microbes in such environments were found to be involved in the formation of minerals including dolomite, a mineral of economic importance and whose origin has been long-debated. Various reports on in vitro experiments using pure cultures provided evidence for the microbial role in dolomite formation. However, culturing experiments have been limited in scope and do not fully address the possible interactions of the naturally occurring microbial communities; consequently, the ability of microbes as a community to form dolomite has been investigated in this study. Our experiments focused on examining the microbial composition by culturing aerobic heterotrophs from the top hypersaline sediments of Al-Khiran sabkha in Kuwait, a modern dolomite-forming environment. The objectives of this study were to assess the ability of two microbial consortia to form dolomite using enrichment culture experiments, mineralogy, and metagenomics. Proto-dolomite was formed by a microbial community dominated by Halomonas strains whereby degradation of the extracellular polymeric substances (EPS) was observed and the pH changed from 7.00 to 8.58. Conversely, proto-dolomite was not observed within a microbial community dominated by Clostridiisalibacter in which EPS continuously accumulated and the pH slightly changed from 7.00 to 7.29.


Asunto(s)
Halomonas , Consorcios Microbianos , Carbonato de Calcio , Kuwait , Magnesio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...