RESUMEN
Low-rank tensor completion (LRTC) aims to recover missing data of high-dimensional structures from a limited set of observed entries. Despite recent significant successes, the original structures of data tensors are still not effectively preserved in LRTC algorithms, yielding less accurate restoration results. Moreover, LRTC algorithms often incur high computational costs, which hinder their applicability. In this work, we propose an attention-guided low-rank tensor completion (AGTC) algorithm, which can faithfully restore the original structures of data tensors using deep unfolding attention-guided tensor factorization. First, we formulate the LRTC task as a robust factorization problem based on low-rank and sparse error assumptions. Low-rank tensor recovery is guided by an attention mechanism to better preserve the structures of the original data. We also develop implicit regularizers to compensate for modeling inaccuracies. Then, we solve the optimization problem by employing an iterative technique. Finally, we design a multistage deep network by unfolding the iterative algorithm, where each stage corresponds to an iteration of the algorithm; at each stage, the optimization variables and regularizers are updated by closed-form solutions and learned deep networks, respectively. Experimental results for high dynamic range imaging and hyperspectral image restoration show that the proposed algorithm outperforms state-of-the-art algorithms.
RESUMEN
The major challenge in high dynamic range (HDR) imaging for dynamic scenes is suppressing ghosting artifacts caused by large object motions or poor exposures. Whereas recent deep learning-based approaches have shown significant synthesis performance, interpretation and analysis of their behaviors are difficult and their performance is affected by the diversity of training data. In contrast, traditional model-based approaches yield inferior synthesis performance to learning-based algorithms despite their theoretical thoroughness. In this paper, we propose an algorithm unrolling approach to ghost-free HDR image synthesis algorithm that unrolls an iterative low-rank tensor completion algorithm into deep neural networks to take advantage of the merits of both learning- and model-based approaches while overcoming their weaknesses. First, we formulate ghost-free HDR image synthesis as a low-rank tensor completion problem by assuming the low-rank structure of the tensor constructed from low dynamic range (LDR) images and linear dependency among LDR images. We also define two regularization functions to compensate for modeling inaccuracy by extracting hidden model information. Then, we solve the problem efficiently using an iterative optimization algorithm by reformulating it into a series of subproblems. Finally, we unroll the iterative algorithm into a series of blocks corresponding to each iteration, in which the optimization variables are updated by rigorous closed-form solutions and the regularizers are updated by learned deep neural networks. Experimental results on different datasets show that the proposed algorithm provides better HDR image synthesis performance with superior robustness compared with state-of-the-art algorithms, while using significantly fewer training samples.