Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 30(7): 1710-1725, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202505

RESUMEN

SREBP2 is a master regulator of the mevalonate pathway (MVP), a biosynthetic process that drives the synthesis of dolichol, heme A, ubiquinone and cholesterol and also provides substrates for protein prenylation. Here, we identify SREBP2 as a novel substrate for USP28, a deubiquitinating enzyme that is frequently upregulated in squamous cancers. Our results show that silencing of USP28 reduces expression of MVP enzymes and lowers metabolic flux into this pathway. We also show that USP28 binds to mature SREBP2, leading to its deubiquitination and stabilisation. USP28 depletion rendered cancer cells highly sensitive to MVP inhibition by statins, which was rescued by the addition of geranyl-geranyl pyrophosphate. Analysis of human tissue microarrays revealed elevated expression of USP28, SREBP2 and MVP enzymes in lung squamous cell carcinoma (LSCC) compared to lung adenocarcinoma (LADC). Moreover, CRISPR/Cas-mediated deletion of SREBP2 selectively attenuated tumour growth in a KRas/p53/LKB1 mutant mouse model of lung cancer. Finally, we demonstrate that statins synergise with a dual USP28/25 inhibitor to reduce viability of SCC cells. Our findings suggest that combinatorial targeting of MVP and USP28 could be a therapeutic strategy for the treatment of squamous cell carcinomas.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Ácido Mevalónico/metabolismo , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/genética , Ubiquitina Tiolesterasa/metabolismo
2.
Cell Death Differ ; 29(3): 568-584, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34611298

RESUMEN

Squamous cell carcinomas (SCC) frequently have an exceptionally high mutational burden. As consequence, they rapidly develop resistance to platinum-based chemotherapy and overall survival is limited. Novel therapeutic strategies are therefore urgently required. SCC express ∆Np63, which regulates the Fanconi Anemia (FA) DNA-damage response in cancer cells, thereby contributing to chemotherapy-resistance. Here we report that the deubiquitylase USP28 is recruited to sites of DNA damage in cisplatin-treated cells. ATR phosphorylates USP28 and increases its enzymatic activity. This phosphorylation event is required to positively regulate the DNA damage repair in SCC by stabilizing ∆Np63. Knock-down or inhibition of USP28 by a specific inhibitor weakens the ability of SCC to cope with DNA damage during platin-based chemotherapy. Hence, our study presents a novel mechanism by which ∆Np63 expressing SCC can be targeted to overcome chemotherapy resistance. Limited treatment options and low response rates to chemotherapy are particularly common in patients with squamous cancer. The SCC specific transcription factor ∆Np63 enhances the expression of Fanconi Anemia genes, thereby contributing to recombinational DNA repair and Cisplatin resistance. Targeting the USP28-∆Np63 axis in SCC tones down this DNA damage response pathways, thereby sensitizing SCC cells to cisplatin treatment.


Asunto(s)
Carcinoma de Células Escamosas , Anemia de Fanconi , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Cisplatino/farmacología , Anemia de Fanconi/tratamiento farmacológico , Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Humanos , Factores de Transcripción/metabolismo , Ubiquitina Tiolesterasa/metabolismo
3.
Front Cell Dev Biol ; 9: 641618, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33738287

RESUMEN

Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53 fl/fl :lsl-KRas G12D/wt . Developing tumors were indistinguishable from Trp53 fl/fl :lsl-KRas G12D/ wt -derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research.

4.
Cell Rep ; 31(12): 107806, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579932

RESUMEN

Cancer cells display an increased plasticity in their lipid metabolism, which includes the conversion of palmitate to sapienate via the enzyme fatty acid desaturase 2 (FADS2). We find that FADS2 expression correlates with mammalian target of rapamycin (mTOR) signaling and sterol regulatory element-binding protein 1 (SREBP-1) activity across multiple cancer types and is prognostic in some cancer types. Accordingly, activating mTOR signaling by deleting tuberous sclerosis complex 2 (Tsc2) or overexpression of SREBP-1/2 is sufficient to increase FADS2 mRNA expression and sapienate metabolism in mouse embryonic fibroblasts (MEFs) and U87 glioblastoma cells, respectively. Conversely, inhibiting mTOR signaling decreases FADS2 expression and sapienate biosynthesis in MEFs with Tsc2 deletion, HUH7 hepatocellular carcinoma cells, and orthotopic HUH7 liver xenografts. In conclusion, we show that mTOR signaling and SREBP activity are sufficient to activate sapienate metabolism by increasing FADS2 expression. Consequently, targeting mTOR signaling can reduce sapienate metabolism in vivo.


Asunto(s)
Ácido Graso Desaturasas/genética , Regulación Neoplásica de la Expresión Génica , Ácidos Palmíticos/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular Tumoral , Ácido Graso Desaturasas/metabolismo , Humanos , Ratones , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
5.
Cancer Res ; 80(2): 189-203, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31744820

RESUMEN

Oncogene activation and loss of tumor suppressor function changes the metabolic activity of cancer cells to drive unrestricted proliferation. Moreover, cancer cells adapt their metabolism to sustain growth and survival when access to oxygen and nutrients is restricted, such as in poorly vascularized tumor areas. We show here that p53-deficient colon cancer cells exposed to tumor-like metabolic stress in spheroid culture activated the mevalonate pathway to promote the synthesis of ubiquinone. This was essential to maintain mitochondrial electron transport for respiration and pyrimidine synthesis in metabolically compromised environments. Induction of mevalonate pathway enzyme expression in the absence of p53 was mediated by accumulation and stabilization of mature SREBP2. Mevalonate pathway inhibition by statins blocked pyrimidine nucleotide biosynthesis and induced oxidative stress and apoptosis in p53-deficient cancer cells in spheroid culture. Moreover, ubiquinone produced by the mevalonate pathway was essential for the growth of p53-deficient tumor organoids. In contrast, inhibition of intestinal hyperproliferation by statins in an Apc/KrasG12D-mutant mouse model was independent of de novo pyrimidine synthesis. Our results highlight the importance of the mevalonate pathway for maintaining mitochondrial electron transfer and biosynthetic activity in cancer cells exposed to metabolic stress. They also demonstrate that the metabolic output of this pathway depends on both genetic and environmental context. SIGNIFICANCE: These findings suggest that p53-deficient cancer cells activate the mevalonate pathway via SREBP2 and promote the synthesis of ubiquinone that plays an essential role in reducing oxidative stress and supports the synthesis of pyrimidine nucleotide.


Asunto(s)
Ácido Mevalónico/metabolismo , Neoplasias/patología , Pirimidinas/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Ubiquinona/análogos & derivados , Animales , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mucosa Intestinal/citología , Mucosa Intestinal/patología , Ratones , Ratones Transgénicos , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Estrés Fisiológico , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquinona/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...