Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(10): 7180-7189, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29480313

RESUMEN

Resonant one-color two-photon ionization spectroscopy and mass-selected threshold photoelectron spectroscopy were applied to study the electronic doublet states of the three xylyl (methyl-benzyl) radicals above 3.9 eV as well as the singlet and triplet states of the cations up to 10.5 eV. The experiments are complemented by quantum chemical calculations and Franck-Condon simulations to characterize the transitions and to identify the origin bands, allowing a precise determination of singlet-triplet splittings in the cations. Torsional motions of the methyl group notably affect the D0 → D3 transition of m-xylyl. All other investigated transitions either lead to electronic states with very low rotational barriers or suffer from spectral broadening in excess of methyl torsional energy levels. The methyl internal rotational potential is faithfully reproduced with the most basic ab initio methods, yet hyperconjugation could not be identified as a significant force shaping them. Time-dependent density functional theory describes the excited electronic states better than wave function theory approaches, notably EOM-CCSD.

2.
Angew Chem Int Ed Engl ; 56(18): 4920-4929, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28070989

RESUMEN

In 1985 the football structure of C60 , buckminsterfullerene was proposed and subsequently confirmed following its macroscopic synthesis in 1990. From the very beginning the role of C60 and C60+ in space was considered, particularly in the context of the enigmatic diffuse interstellar bands. These are absorption features found in the spectra of reddened star light. The first astronomical observations were made around one hundred years ago and despite significant efforts none of the interstellar molecules responsible have been identified. The absorption spectrum of C60+ was measured in a 5 K neon matrix in 1993 and two prominent bands near 9583 Šand 9645 Šwere observed. On the basis of this data the likely wavelength range in which the gas phase C60+ absorptions should lie was predicted. In 1994 two diffuse interstellar bands were found in this spectral region and proposed to be due to C60+ . It took over 20 years to measure the absorption spectrum of C60+ under conditions similar to those prevailing in diffuse clouds. In 2015, sophisticated laboratory experiments led to the confirmation that these two interstellar bands are indeed caused by C60+ , providing the first answer to this century old puzzle. Here, we describe the experiments, concepts and astronomical observations that led to the detection of C60+ in interstellar space.

3.
J Phys Chem A ; 120(51): 10134-10140, 2016 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-27976905

RESUMEN

C7H4O2+ and C7H5O2+ ions and the respective neutrals have been investigated by absorption spectroscopy in neon matrixes following mass selection of ions produced from salicylic acid. Three electronic transitions starting at 649.6, 431.0, and 372.0 nm are detected for C7H4O2+ and assigned on the basis of CASPT2 energies and Franck-Condon simulations as the excitations from the X 2A″ to the 1 2A″, 2 2A″, and 3 2A″ electronic states of 6-(oxomethylene)-2,4-cyclohexadien-1-one ion (A+). Absorptions commencing at 366.4 nm are observed for C7H5O2+ and assigned to the 1 2A' ← X 2A' electronic transition of (2-hydroxyphenyl)methanone ion (J+). Neutralization of J+ leads to the appearance of four absorption systems attributed to the 4 2A″, 3 2A″, 2 2A″, and 1 2A″ ← X 2A″ transitions of J with origin bands 291.3, 361.2, 393.8, and 461.2 nm.

4.
Philos Trans A Math Phys Eng Sci ; 374(2076)2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27501976

RESUMEN

The origin of the attenuation of starlight in diffuse clouds in interstellar space at specific wavelengths ranging from the visible to the near-infrared has been unknown since the first astronomical observations around a century ago. The absorption features, termed the diffuse interstellar bands, have subsequently been the subject of much research. Earlier this year four of these interstellar bands were shown to be due to the absorption by cold, gas phase [Formula: see text] molecules. This discovery provides the first answer to the problem of the diffuse interstellar bands and leads naturally to fascinating questions regarding the role of fullerenes and derivatives in interstellar chemistry. Here, we review the identification process placing special emphasis on the laboratory studies which have enabled spectroscopic measurement of large cations cooled to temperatures prevailing in the interstellar medium.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

5.
J Chem Phys ; 144(24): 244309, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27369517

RESUMEN

Two electronic transitions at 512.3 and 250 nm of linear-C5H(+) are detected following mass-selective deposition of m/z = 61 cations into a 6 K neon matrix and assigned to the 1 (1)Π←X (1)Σ(+) and 1 (1)Σ(+)←X (1)Σ(+) systems. Five absorption systems of l-C5H with origin bands at 528,7, 482.6, 429.0, 368.5, and 326.8 nm are observed after neutralization of the cations in the matrix and identified as transitions from the X (2)Π to 1 (2)Δ, 1 (2)Σ (-), 1 (2)Σ(+), 2 (2)Π, and 3 (2)Π electronic states. The assignment to specific structures is based on calculated excitation energies, vibrational frequencies in the electronic states, along with simulated Franck-Condon profiles.

6.
Angew Chem Int Ed Engl ; 55(10): 3424-7, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26845059

RESUMEN

Three vibrationally resolved absorption systems commencing at 538, 518, and 392 nm were detected in a 6 K neon matrix after mass-selected deposition of C13 H9 (+) ions (m/z=165) produced from fluorene in a hot-cathode discharge ion source. The benz[f]indenylium (BfI(+) : 538 nm), fluorenylium (FL9(+) : 518 nm), and phenalenylium (PHL(+) : 392 nm) cations are the absorbing molecules. Two electronic systems corresponding to neutral species are apparent at 490 and 546 nm after irradiation of the matrix with λ<260 nm photons and were assigned to the FL9 and BfI radicals, respectively. The strongest peak at 518 nm is the origin of the 2 (1) B2 ←X̃ (1) A1 absorption of FL9(+) , and the 490 nm band is the 2 (2) A2 ←X̃ (2) B1 origin of FL9. The electronic systems commencing at 538 nm and 546 nm were assigned to the 1 (1) A1 ←X̃ (1) A1 and 1 (2) A2 ←X̃ (2) A2 transitions of BfI(+) and BfI. The 392 nm band is the 1 (1) E'←X̃ (1) A1 ' transition of PHL(+). The electronic spectra of C13 H9 (+) /C13 H9 were assigned on the basis of the vertical excitation energies calculated with SAC-CI and MS-CASPT2 methods.

7.
Angew Chem Int Ed Engl ; 55(1): 228-31, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26593635

RESUMEN

The fulvenallenyl radical was produced in 6 K neon matrices after mass-selective deposition of C7H5(-) and C7H5(+) generated from organic precursors in a hot cathode ion source. Absorption bands commencing at λ=401.3 nm were detected as a result of photodetachment of electrons from the deposited C7H5(-) and also by neutralization of C7H5(+) in the matrix. The absorption system is assigned to the 1 (2)B1 ←X (2)B1 transition of the fulvenallenyl radical on the basis of electronic excitation energies calculated with the MS-CASPT2 method. The vibrational excitation bands detected in the spectrum concur with the structure of the fulvenallenyl radical. Employing DFT calculations, it is found that the fulvenallenyl anion and its radical are the global minima on the potential energy surface among plausible structures of C7H5.

8.
J Phys Chem A ; 119(44): 10849-53, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26463227

RESUMEN

The gas phase detection of benzocyclopropenyl is reported. In this aromatic resonance stabilized radical, a large angular strain is present due to a three-membered ring annelated to a benzene. The resonant two-color two-photon ionization technique is used to record the D1((2)A2) ← D0((2)B1) electronic transition of this radical after the in situ synthesis in a discharge source. The spectrum features absorptions up to 3300 cm(-1) above the origin band at 19,305 cm(-1). Benzocyclopropenyl is possibly the major product of the bimolecular reaction of benzene and an atomic carbon at low temperatures.

9.
J Chem Phys ; 143(8): 084312, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26328848

RESUMEN

The electronic transitions of 9-fluorenone FL(+) and 2,3,6,7-dibenzotropone DBT(+) cations were detected in 6 K neon matrices following a mass-selective deposition. The absorptions at 649.2 and 472.2 nm are assigned to the 2 (2)B1←X̃(2)A2 FL(+) and 2(2)A(')←X̃(2)A(') DBT(+) transitions. Absorption spectra of protonated 9-fluorenone H(+)-FL and 2,3,6,7-dibenzotropone H(+)-DBT have also been measured. Protonation of the oxygenated polycyclic aromatic hydrocarbons is carried out in a hot cathode source via in situ produced protonated ethanol. Vibrationally resolved absorptions commencing at 423.3 nm of H-FL(+) and two band systems of H-DBT(+) with origins at 502.4 and 371.5 nm are assigned to the 2(1)A(')←X̃(1)A(') electronic transition of 9-hydroxy-fluorenyl cation and 1 (1)A←X̃(1)A, 2 (1)A←X̃(1)A of 2,3,6,7-dibenzocycloheptenol cation. The assignments are based on vertical excitation energy calculations with time dependent density functional theory, symmetry adapted cluster configuration interaction, and MS-CASPT2 methods.

10.
J Chem Phys ; 142(24): 244311, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-26133432

RESUMEN

The 1(3)Σu (-)←X(3)Σg (-) transition of linear HC5H (A) has been observed in a neon matrix and gas phase. The assignment is based on mass-selective experiments, extrapolation of previous results of the longer HC2n+1H homologues, and density functional and multi-state CASPT2 theoretical methods. Another band system starting at 303 nm in neon is assigned as the 1(1)A1←X˜(1)A1 transition of the cumulene carbene pentatetraenylidene H2C5 (B).

11.
J Phys Chem A ; 119(34): 9078-84, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26203496

RESUMEN

The gas-phase electronic spectra of two resonantly stabilized radicals, 1-indanyl (C9H9) and 1-methyl-1-indanyl (C10H11), have been recorded in the visible region using a resonant two-color two-photon ionization (R2C2PI) scheme. The D1(A″) ← D0(A″) origin bands of 1-indanyl and 1-methyl-1-indanyl radicals are observed at 21157 and 20565 cm(­1), respectively. The excitation of a' vibrations in the D1 state is observed up to ∼1500 cm(­1) above the origin band in both cases. The experimental assignments are in agreement with DFT and TD-DFT calculations. The R2C2PI spectrum recorded at m/z = 131 amu (C10H11) features three additional electronic transitions at 21433, 21369, and 17989 cm(­1), which are assigned to the origin bands of 7-methyl-1-indanyl, 2,3,4-trihydronaphthyl, and methyl-4-ethenylbenzyl radicals, respectively.

12.
J Phys Chem A ; 119(11): 2338-43, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25180760

RESUMEN

Two absorption systems of C5H3(+) starting at 350 and 345 nm were detected following mass-selective deposition of m/e = 63 ions in a 6 K neon matrix. These are assigned to the 1 (1)A1 ← X (1)A1 electronic transition of 1,2,3,4-pentatetraenylium H2CCCCCH(+) (isomer B(+)) and 1 (1)B2 ← X (1)A1 of penta-1,4-diyne-3-ylium HCCCHCCH(+) (C(+)). The absorptions of neutral C5H3 isomers with onsets at 434.5, 398.3, 369.0, and 267.3 nm are also detected. The first two systems are assigned to the 1 (2)B1 ← X (2)B1 and 1 (2)A2 ← X (2)B1 transitions of isomer B and C, respectively, and the latter two to ethynylcyclopropenyl (A) and 3-vinylidenecycloprop-1-enyl (D) radicals. The structural assignments are based on the adiabatic excitation energies calculated with the MS-CASPT2 method. A vibrational analysis of the electronic spectra, based on the calculated harmonic frequencies, supports this.

13.
J Phys Chem A ; 119(1): 50-5, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25495044

RESUMEN

Three absorption systems with origins at 354, 497, and 528 nm were detected after mass-selected deposition of H2C6O(+) in a 6 K neon matrix. The ions were formed by the reaction of C2O with HC4H(+) in a mixture of C3O2 and diacetylene in a hot cathode source, or by dissociative ionization of tetrabromocyclohexadienone. The 497 and 354 nm systems are assigned to the 1(2)A″ ← X(2)A″ and 2(2)A″ ← X(2)A″ electronic transitions of B(+), (2-ethynylcycloallyl)methanone cation, and the 528 nm absorption to the 1(2)A2 ← X(2)B1 transition of F(+), 2-ethynylbut-3-yn-1-enone-1-ylide, on the basis of calculated excitation energies with CASPT2.

14.
Phys Chem Chem Phys ; 16(15): 7023-30, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24603977

RESUMEN

Mass selective deposition of C7H3(+) (m/z = 87) into solid neon reveals the 1(1)A1←X(1)A1 electronic absorption system of hepta-1,2,3,4,5,6-heptahexaenylium cation B(+) [H2CCCCCCCH](+) with an origin band at 441.3 nm, 1(1)A'←X(1)A' transition of 2,4-pentadiynylium,1-ethynyl cation C(+) [HCCCHCCCCH](+) starting at 414.6 nm and the 1(1)A1←X(1)A1 one of cyclopropenylium,1,3-butadiynyl cation A(+) [HCCCCC<(CH=CH)](+) with an onset at 322.2 nm. Vibrationally resolved fluorescence was observed for isomer B(+) upon laser excitation of the absorption bands in the 1(1)A1←X(1)A1 transition. After neutralization of the cations in the matrix five absorption systems of the C7H3 neutral radicals starting at 530.3, 479.4, 482.3, 325.0 and 302.5 nm were detected. These were identified as the 1(2)A'←X(2)A' and 2(2)A'←X(2)A' electronic transitions of 2-(buta-1,3-diynyl)cycloprop-2yl-1-1ylidene E˙ [HCCCCC<(C=CH2)]˙, 1(2)B1←X(2)B1 of 1,2,3,4,5,6-heptahexaenyl B˙ [H2CCCCCCCH]˙, 3(2)B1←X(2)B1 of 3-buta-1,3-diynyl-cyclopropenyl A˙ [HCCCCC<(CH=CH)]˙ and 2(2)B1←X(2)A2 transition of 1,2-divinylidene-cyclopropanyl radical F˙ [HCC-cyc-(CCHC)-CCH]˙, respectively. The assignment is based on calculated vertical excitation energies using the CASPT2 method. Comparison of the calculated harmonic vibrational frequencies with those inferred from the spectra supports the assignment.

15.
Chem Soc Rev ; 43(13): 4602-14, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24676285

RESUMEN

Carbon is one of the most common elements in the solar system, with a fractional abundance of 10(-4) relative to hydrogen. Thus, it is not surprising that over 100 carbon-bearing species have been definitively detected in the interstellar medium via their rotational, infrared, and/or electronic transitions. In order to identify these species, laboratory spectra are needed for comparison to astronomical data. Challenges arise when obtaining laboratory spectra due to the instability of many of these molecules. Over the years, sensitive instrumentation and better techniques for producing these species in situ have been developed to achieve this goal. The use of complementary spectroscopic methods, such as matrix isolation, cavity ringdown, resonance enhanced multiphoton ionization, and ion trapping have led to the identification of several new carbon species at optical and ultraviolet wavelengths. Laboratory spectra have been compared to astronomical data in order to gain further insight into interstellar chemistry. In particular, attempts have been made to identify the carriers of the diffuse interstellar bands, however, with little success. These results are discussed in the following review.

16.
Phys Chem Chem Phys ; 16(3): 1161-5, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24291817

RESUMEN

Ultraviolet electronic transitions of the linear carbon chains C6, C7, C8, and C9 were measured in the gas phase by a mass-resolved 1 + 1 resonant two-photon ionization technique using a picosecond laser. Broad absorptions with band maxima at 230.2 and 259.0 nm are identified as N(3)Σ(u)(-) - X(3)Σ(g)(-) (N > 3) transition of C6 and C8, respectively. Based on calculated Franck-Condon intensities, the band maxima are identified as origin bands. An upper limit of 30 ps is determined for the N(3)Σ(u)(-) excited state lifetime of C6. The (1)Σ(u)(+)- X(1)Σ(g)(+) transition with band maximum at 238.5 nm was observed for C7 and at 279.0 nm for C9. The proposition that intramolecular processes in the excited electronic states of carbon chains can lead to broadening as in the diffuse interstellar absorptions is experimentally demonstrated.

17.
Phys Chem Chem Phys ; 15(44): 19091-101, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24108101

RESUMEN

In this Perspective the development and application of a mass-selective matrix isolation approach, employed with success over the last two decades in the spectroscopic characterization of numerous ions and neutral reactive species, is illustrated with original data for hydrocarbon cations and neutrals with a six- and a five-membered carbon ring fused. The setup allows for the electronic and vibrational assessment of these isolated molecules and ions in the inert neon environment. The transient species of interest are chosen due to their astrophysical relevance, and the role they play in flames, plasmas, combustion, organic reactions and atmospheric chemistry. Electronic absorption and fluorescence spectra of indene-related polycyclic aromatic hydrocarbon derivatives, C9Hy(+) (y = 7-9) cations, are presented. The ions were produced in a discharge source and investigated by means of absorption and emission spectroscopies after selectively trapping them in 6 K neon matrices. Photoconversion between the two C9H8(+) indenylium isomers and, upon irradiation, H2 loss from C9H9(+) were observed. Corresponding neutral species C9Hy are identified by photobleaching the matrices containing the cations.

18.
J Phys Chem A ; 117(50): 13605-15, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24074188

RESUMEN

Three open-chain isomers of C6H4(+) and two cyclic ones were detected following mass-selective trapping in 6 K neon matrixes. The open-chain cations 5-hexene-1,3-diyne (CH2═CH-CC-CC-H)(+) and cis- (cis-HCC-CH═CH-CCH)(+) and trans-3-hexene-1,5-diyne (trans-HCC-CH═CH-CCH)(+), possess two absorption systems commencing at 609 and 373, 622 and 385, and 585 and 373 nm, respectively. They are assigned to the 1 (2)A" and 2 (2)A" ← X (2)A", 1(2)A2 and 2 (2)A2 ← X (2)B1, and 1 (2)Bg and 2 (2)B(g) ← X (2)A(u) electronic transitions of these cations. Two overlapping systems are detected at around 420 nm and tentatively assigned to the 1 (2)A" ← X (2)A" electronic transitions of propargyl cyclopropene and 2 (2)B1 ← X (2)A2 of o-benzyne cation structures. The assignment of the electronic transitions is based on theoretical vertical excitation energies calculated with CASPT2 and EOMEE-CCSDT methods for 12 isomers of C6H4(+). These have been carried out at the geometries optimized using several ab initio methods. Adiabatic excitation energies were calculated for the five identified isomers of C6H4(+).

19.
J Phys Chem A ; 117(2): 351-60, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23244534

RESUMEN

Alpha- and beta-protonated naphthalenes (α- and ß-HN(+)) were investigated by electronic absorption and fluorescence spectroscopies in 6 K neon matrixes using a mass-selected C(10)H(9)(+) ion beam. The absorption spectra reveal S(1)/S(2) ← S(0) transitions with onsets at 502.1 and 396.1 nm for α-HN(+), and 534.5 and 322.3 nm in the case of ß-HN(+). Wavelength-dispersed fluorescence was detected for α-HN(+), starting at 504.4 nm. Light-induced α-HN(+) → ß-HN(+) isomerization was observed upon S(2) ← S(0) excitation of α-HN(+), whereas ß-HN(+) relaxed back into the more stable alpha form either upon excitation to S(1) or via thermal population of the ground state vibrational levels near the top of the energy barrier between the two isomers. The intramolecular proton transfer leading to the α-HN(+) ↔ ß-HN(+) photoisomerization is fully reversible. The observations are explained with the support of theoretical calculations on the ground- and excited states of the isomers, vertical excitation and adiabatic energies, minimum-energy pathways along the relevant reaction coordinates, and conical intersections between the electronic states.

20.
J Chem Phys ; 136(13): 134312, 2012 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-22482557

RESUMEN

A joint experimental-theoretical study has been carried out on electronic states of propadienylidene (H(2)CCC), using results from negative-ion photoelectron spectroscopy. In addition to the previously characterized X(1)A(1) electronic state, spectroscopic features are observed that belong to five additional states: the low-lying ã(3)B(1) and b(3)A(2) states, as well as two excited singlets, Ã(1)A(2) and B(1)B(1), and a higher-lying triplet, c(3)A(1). Term energies (T(0), in cm(-1)) for the excited states obtained from the data are: 10,354±11 (ã(3)B(1)); 11,950±30 (b(3)A(2)); 20,943±11 (c(3)A(1)); and 13,677±11 (Ã(1)A(2)). Strong vibronic coupling affects the Ã(1)A(2) and B(1)B(1) states as well as ã(3)B(1) and b(3)A(2) and has profound effects on the spectrum. As a result, only a weak, broadened band is observed in the energy region where the origin of the B(1)B(1) state is expected. The assignments here are supported by high-level coupled-cluster calculations and spectral simulations based on a vibronic coupling Hamiltonian. A result of astrophysical interest is that the present study supports the idea that a broad absorption band found at 5450 Å by cavity ringdown spectroscopy (and coincident with a diffuse interstellar band) is carried by the B(1)B(1) state of H(2)CCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...