RESUMEN
Motivated by the recently reported signatures of superconductivity in trilayer La_{4}Ni_{3}O_{10} under pressure, we comprehensively study this system using ab initio and random-phase approximation techniques. Without electronic interactions, the Ni d_{3z^{2}-r^{2}} orbitals show a bonding-antibonding and nonbonding splitting behavior via the O p_{z} orbitals inducing a "trimer" lattice in La_{4}Ni_{3}O_{10}, analogous to the dimers of La_{3}Ni_{2}O_{7}. The Fermi surface consists of three electron sheets with mixed e_{g} orbitals, and a hole and an electron pocket made up of the d_{3z^{2}-r^{2}} orbital, suggesting a Ni two-orbital minimum model. In addition, we find that superconducting pairing is induced in the s^{±}-wave channel due to partial nesting between the M=(π,π) centered pockets and portions of the Fermi surface centered at the Γ=(0,0) point. With changing electronic density n, the s^{±} instability remains leading and its pairing strength shows a domelike behavior with a maximum around n=4.2 (â¼6.7% electron doping). The superconducting instability disappears at the same electronic density as that in the new 1313 stacking La_{3}Ni_{2}O_{7}, correlated with the vanishing of the hole pocket that arises from the trilayer sublattice, suggesting that the high-T_{c} superconductivity of La_{3}Ni_{2}O_{7} does not originate from a trilayer and monolayer structure. Furthermore, we confirm the experimentally proposed spin state in La_{4}Ni_{3}O_{10} with an in-plane (π, π) order and antiferromagnetic coupling between the top and bottom Ni layers, and spin zero in the middle layer.
RESUMEN
Soybean cyst nematode (SCN, Heterodera glycines) is most effectively managed through planting resistant soybean cultivars, but the repeated use of the same resistance sources has led to a widespread emergence of virulent SCN populations that can overcome soybean resistance. Resistance to SCN HG type 0 (Race 3) in soybean cultivar Forrest is mediated by an epistatic interaction between the soybean resistance genes rhg1-a and Rhg4. We previously developed two SCN inbred populations by mass-selecting SCN HG type 0 (Race 3) on susceptible and resistant recombinant inbred lines, derived from a cross between Forrest and the SCN-susceptible cultivar Essex, which differ for Rhg4. To identify SCN genes potentially involved in overcoming rhg1-a/Rhg4-mediated resistance, we conducted RNA sequencing on early parasitic juveniles of these two SCN inbred populations infecting their respective hosts, only to discover a handful of differentially expressed genes (DEGs). However, in a comparison with early parasitic juveniles of an avirulent SCN inbred population infecting a resistant host, we discovered 59 and 171 DEGs uniquely up- or downregulated in virulent parasitic juveniles adapted on the resistant host. Interestingly, the proteins coded by these 59 DEGs included vitamin B-associated proteins (reduced folate carrier, biotin synthase, and thiamine transporter) and nematode effectors known to play roles in plant defense suppression, suggesting that virulent SCN may exert a heightened transcriptional response to cope with enhanced plant defenses and an altered nutritional status of a resistant soybean host. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Asunto(s)
Resistencia a la Enfermedad , Glycine max , Enfermedades de las Plantas , Tylenchoidea , Glycine max/genética , Glycine max/parasitología , Glycine max/inmunología , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica de las PlantasRESUMEN
Motivated by the recently discovered high-Tc superconductor La3Ni2O7, we comprehensively study this system using density functional theory and random phase approximation calculations. At low pressures, the Amam phase is stable, containing the Y2- mode distortion from the Fmmm phase, while the Fmmm phase is unstable. Because of small differences in enthalpy and a considerable Y2- mode amplitude, the two phases may coexist in the range between 10.6 and 14 GPa, beyond which the Fmmm phase dominates. In addition, the magnetic stripe-type spin order with wavevector (π, 0) was stable at the intermediate region. Pairing is induced in the s±-wave channel due to partial nesting between the M = (π, π) centered pockets and portions of the Fermi surface centered at the X = (π, 0) and Y = (0, π) points. This resembles results for iron-based superconductors but has a fundamental difference with iron pnictides and selenides. Moreover, our present efforts also suggest La3Ni2O7 is qualitatively different from infinite-layer nickelates and cuprate superconductors.
RESUMEN
The ability to control the properties of twisted bilayer transition metal dichalcogenides in situ makes them an ideal platform for investigating the interplay of strong correlations and geometric frustration. Of particular interest are the low energy scales, which make it possible to experimentally access both temperature and magnetic fields that are of the order of the bandwidth or the correlation scale. In this manuscript, we analyze the moiré Hubbard model, believed to describe the low energy physics of an important subclass of the twisted bilayer compounds. We establish its magnetic and the metal-insulator phase diagram for the full range of magnetic fields up to the fully spin-polarized state. We find a rich phase diagram including fully and partially polarized insulating and metallic phases of which we determine the interplay of magnetic order, Zeeman-field, and metallicity, and make connection to recent experiments.
RESUMEN
The reaction of (1R,2R)-(cyclohexane-1,2-diamine)dichloridoplatinum(II) with maleic acid unexpectedly resulted in the formation of an organometallic platinum(II) complex featuring a C,O-coordinating ligand. Additionally, a small series of close derivatives with increasing lipophilicity was synthesized. All complexes were fully characterized by multinuclear one- and two-dimensional (1H, 13C, 15N, and 195Pt) NMR spectroscopy, high resolution mass spectrometry, and in one case by X-ray diffraction. The lipophilicity and the impact on the DNA secondary structure as well as the cytotoxic properties in three human cancer cell lines (A549, SW480, and CH1/PA-1) were investigated. Unexpectedly, no clear-cut trend in cytotoxicity was observed with increasing lipophilicity. Also unexpectedly, the complexes showed only a low potential to inhibit cancer cell growth and no sign of interaction with DNA, in sharp contrast to the parent drug oxaliplatin, which seems to be caused by the low reactivity of the investigated compounds.
Asunto(s)
Antineoplásicos , Platino (Metal) , Humanos , Platino (Metal)/química , Compuestos Organoplatinos/química , Línea Celular Tumoral , Antineoplásicos/química , ADN , Ensayos de Selección de Medicamentos AntitumoralesRESUMEN
There is growing evidence that the hole-doped single-band Hubbard and t - J models do not have a superconducting ground state reflective of the high-temperature cuprate superconductors but instead have striped spin- and charge-ordered ground states. Nevertheless, it is proposed that these models may still provide an effective low-energy model for electron-doped materials. Here we study the finite temperature spin and charge correlations in the electron-doped Hubbard model using quantum Monte Carlo dynamical cluster approximation calculations and contrast their behavior with those found on the hole-doped side of the phase diagram. We find evidence for a charge modulation with both checkerboard and unidirectional components decoupled from any spin-density modulations. These correlations are inconsistent with a weak-coupling description based on Fermi surface nesting, and their doping dependence agrees qualitatively with resonant inelastic x-ray scattering measurements. Our results provide evidence that the single-band Hubbard model describes the electron-doped cuprates.
RESUMEN
Colistin is a last resort drug for the treatment of multiple drug-resistant (MDR) Gram-negative bacterial infections. Rapid methods to detect resistance are highly desirable. Here, we evaluated the performance of a commercially available MALDI-TOF MS-based assay for colistin resistance testing in Escherichia coli at two different sites. Ninety clinical E. coli isolates were provided by France and tested in Germany and UK using a MALDI-TOF MS-based colistin resistance assay. Lipid A molecules of the bacterial cell membrane were extracted using the MBT Lipid Xtract Kit™ (RUO; Bruker Daltonics, Germany). Spectra acquisition and evaluation were performed by the MBT HT LipidART Module of MBT Compass HT (RUO; Bruker Daltonics) on a MALDI Biotyper® sirius system (Bruker Daltonics) in negative ion mode. Phenotypic colistin resistance was determined by broth microdilution (MICRONAUT MIC-Strip Colistin, Bruker Daltonics) and used as a reference. Comparing the results of the MALDI-TOF MS-based colistin resistance assay with the data of the phenotypic reference method for the UK, sensitivity and specificity for the detection of colistin resistance were 97.1% (33/34) and 96.4% (53/55), respectively. Germany showed 97.1% (33/34) sensitivity and 100% (55/55) specificity for the detection of colistin resistance by MALDI-TOF MS. Applying the MBT Lipid Xtract™ Kit in combination with MALDI-TOF MS and dedicated software showed excellent performances for E. coli. Analytical and clinical validation studies must be performed to demonstrate the performance of the method as a diagnostic tool.
Asunto(s)
Colistina , Escherichia coli , Humanos , Colistina/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Alemania , FranciaRESUMEN
OBJECTIVE: With the rapid advancement of digital technology due to COVID-19, the health care field is embracing the use of digital technologies for learning, which presents an opportunity for teaching methods such as serious games to be developed and improved. Technology offers more options for these educational approaches. The goal of this study was to assess health care workers' experiences, attitudes, and knowledge regarding serious games in training. METHODS: The convenience sample consisted of 223 participants from the specialties of internal medicine and psychiatry who responded to questions regarding sociodemographic data, experience, attitudes, and knowledge regarding serious games. This study used an ordinal regression model to analyze the relationship between knowledge, attitudes, and experiences and the idea or wish to implement serious games. RESULTS: The majority of healthcare workers were not familiar with serious games or gamification. The results show gender and age differences regarding familiarity and willingness to use serious games. With increasing age, the respondents preferred conventional and traditional learning methods to playful teaching elements; younger generations were significantly more motivated than older generations when envisioning using elements of serious games in the future. CONCLUSIONS: The COVID-19 pandemic has encouraged the use of new technologies and digitalization. This study describes positive attitudes toward serious games, mainly in younger people working in health care. Serious games present an opportunity to develop new approaches for postgraduate medical teachings and continuing medical education.
Asunto(s)
COVID-19 , Juegos de Video , Humanos , Gamificación , Pandemias , Juegos de Video/psicología , Personal de SaludRESUMEN
Introducing the novel concept of amino radical transfer (ART) enables the use of easily accessible and commercially available alkyl boronic esters as cross-coupling partners for aryl halides in dual photoredox/nickel catalysis mediated by visible light. Activation of otherwise photochemically innocent boronic esters by radicals generated from primary or secondary alkylamines gives rise to an outstanding functional group tolerance in a mild, fast, and air-stable reaction. As shown in more than 50 examples including unprotected alcohols, amines, and carboxylic acids, this reaction allows quick access to relevant scaffolds for organic synthesis and medicinal chemistry. In comparison with existing methods for C(sp2)-C(sp3) couplings an extraordinary generality could be realized via the ART concept, employing a single set of optimized reaction conditions. Due to its selectivity, the transformation can also be used for late-stage functionalization, as demonstrated with three exemplary syntheses of drug molecules. Furthermore, the successful one-to-one scalability of this reaction up to gram scale without the necessity of any further precautions or flow systems is demonstrated.
Asunto(s)
Alcoholes , Níquel , Alcoholes/química , Ácidos Carboxílicos/química , Catálisis , Ésteres , Níquel/químicaRESUMEN
Acoustic droplet ejection mass spectrometry (ADE-MS) has recently emerged as a promising label-free, MS-based readout method for high throughput screening (HTS) campaigns in early pharmaceutical drug discovery, since it enables high-speed analysis directly from 384- or 1536-well plates. In this manuscript we describe our characterization of an ADE-MS based high sample content enzymatic assay for mutant isocitrate dehydrogenase 1 (IDH1) R132H with a strong focus on assay development. IDH1 R132H has become a very attractive therapeutic target in the field of antitumor drug discovery, and several pharmaceutical companies have attempted to develop novel small molecule inhibitors against mutant IDH1. With the development of an mIDH1 ADE-MS based HTS assay and a detailed comparison of this new readout technique to the commonly used fluorescence intensity mIDH1 assay, we demonstrated good correlation of both methods and were able to identify new potent inhibitors of mIDH1.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Isocitrato Deshidrogenasa , Acústica , Ensayos Analíticos de Alto Rendimiento/métodos , Isocitrato Deshidrogenasa/genética , Espectrometría de Masas , Preparaciones FarmacéuticasRESUMEN
The high-temperature superconducting cuprates are governed by intertwined spin, charge, and superconducting orders. While various state-of-the-art numerical methods have demonstrated that these phases also manifest themselves in doped Hubbard models, they differ on which is the actual ground state. Finite-cluster methods typically indicate that stripe order dominates, while embedded quantum-cluster methods, which access the thermodynamic limit by treating long-range correlations with a dynamical mean field, conclude that superconductivity does. Here, we report the observation of fluctuating spin and charge stripes in the doped single-band Hubbard model using a quantum Monte Carlo dynamical cluster approximation (DCA) method. By resolving both the fluctuating spin and charge orders using DCA, we demonstrate that they survive in the doped Hubbard model in the thermodynamic limit. This discovery also provides an opportunity to study the influence of fluctuating stripe correlations on the model's pairing correlations within a unified numerical framework. Using this approach, we also find evidence for pair-density-wave correlations whose strength is correlated with that of the stripes.
RESUMEN
The burrowing nematode, Radopholus similis, is an economically important plant-parasitic nematode that inflicts damage and yield loss to a wide range of crops. This migratory endoparasite is widely distributed in warmer regions and causes extensive destruction to the root systems of important food crops (e.g., citrus, banana). Despite the economic importance of this nematode, little is known about the repertoire of effectors owned by this species. Here we combined spatially and temporally resolved next-generation sequencing datasets of R. similis to select a list of candidates for the identification of effector genes for this species. We confirmed spatial expression of transcripts of 30 new candidate effectors within the esophageal glands of R. similis by in situ hybridization, revealing a large number of pioneer genes specific to this nematode. We identify a gland promoter motif specifically associated with the subventral glands (named Rs-SUG box), a putative hallmark of spatial and concerted regulation of these effectors. Nematode transcriptome analyses confirmed the expression of these effectors during the interaction with the host, with a large number of pioneer genes being especially abundant. Our data revealed that R. similis holds a diverse and emergent repertoire of effectors, which has been shaped by various evolutionary events, including neofunctionalization, horizontal gene transfer, and possibly by de novo gene birth. In addition, we also report the first GH62 gene so far discovered for any metazoan and putatively acquired by lateral gene transfer from a bacterial donor. Considering the economic damage caused by R. similis, this information provides valuable data to elucidate the mode of parasitism of this nematode.
Asunto(s)
Regulación de la Expresión Génica , Proteínas del Helminto/metabolismo , Nicotiana/parasitología , Enfermedades de las Plantas/parasitología , Transcriptoma , Tylenchida/fisiología , Animales , Proteínas del Helminto/genética , Filogenia , Nicotiana/crecimiento & desarrolloRESUMEN
Reactions of di-tert-butyldiphosphatetrahedrane (1) with cycloocta-1,5-diene- or anthracene-stabilised metalate anions of iron and cobalt consistently afford complexes of the rarely encountered 1,2-diphosphacyclobutadiene ligand, which have previously been very challenging synthetic targets. The subsequent reactivity of 1,2-diphosphacyclobutadiene cobaltates toward various electrophiles has also been investigated and is compared to reactions of related 1,3-diphosphacyclobutadiene complexes. The results highlight the distinct reactivity of such isomeric species, showing that the 1,2-isomers can act as precursors for previously unknown triphospholium ligands. The electronic structures of the new complexes were investigated by several methods, including NMR, EPR and Mößbauer spectroscopies as well as quantum chemical calculations.
Asunto(s)
Cobalto , Cristalografía por Rayos X , Ligandos , Estructura Molecular , Espectroscopía de MossbauerRESUMEN
The unambiguous application of fungal names is important to communicate scientific findings. Names are critical for (clinical) diagnostics, legal compliance, and regulatory controls, such as biosafety, food security, quarantine regulations, and industrial applications. Consequently, the stability of the taxonomic system and the traceability of nomenclatural changes is crucial for a broad range of users and taxonomists. The unambiguous application of names is assured by the preservation of nomenclatural history and the physical organisms representing a name. Fungi are extremely diverse in terms of ecology, lifestyle, and methods of study. Predominantly unicellular fungi known as yeasts are usually investigated as living cultures. Methods to characterize yeasts include physiological (growth) tests and experiments to induce a sexual morph; both methods require viable cultures. Thus, the preservation and availability of viable reference cultures are important, and cultures representing reference material are cited in species descriptions. Historical surveys revealed drawbacks and inconsistencies between past practices and modern requirements as stated in the International Code of Nomenclature for Algae, Fungi, and Plants (ICNafp). Improper typification of yeasts is a common problem, resulting in a large number invalid yeast species names. With this opinion letter, we address the problem that culturable microorganisms, notably some fungi and algae, require specific provisions under the ICNafp. We use yeasts as a prominent example of fungi known from cultures. But viable type material is important not only for yeasts, but also for other cultivable Fungi that are characterized by particular morphological structures (a specific type of spores), growth properties, and secondary metabolites. We summarize potential proposals which, in our opinion, will improve the stability of fungal names, in particular by protecting those names for which the reference material can be traced back to the original isolate.
RESUMEN
In ultrathin films of FeSe grown on SrTiO3 (FeSe/STO), the superconducting transition temperature Tc is increased by almost an order of magnitude, raising questions on the pairing mechanism. As in other superconductors, antiferromagnetic spin fluctuations have been proposed to mediate SC making it essential to study the evolution of the spin dynamics of FeSe from the bulk to the ultrathin limit. Here, we investigate the spin excitations in bulk and monolayer FeSe/STO using resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to its bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems revealing a remarkable reconfiguration of spin excitations in FeSe/STO, essential to understand the role of spin fluctuations in the pairing mechanism.
RESUMEN
The description of Gardnerella vaginalis was recently updated and three new species, including nine genome species within Gardnerella, were defined using whole genome sequences and matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. A fast and simple method based on readily available techniques would be of immense use to identify Gardnerella species in research and clinical practice. Here we show that 34 previously characterized Gardnerella isolates were assigned to the species using partial chaperonin cpn60 sequences. The MALDI Biotyper from Bruker Daltonik GmbH demonstrated the capability to differentiate the phylogenetically diverse groups composed of G. vaginalis/G. piotii and G. leopoldii/G. swidsinskii. Among the phenotypic properties that characterize Gardnerella species are sialidase and ß-galactosidase activities. Our data confirmed that the NanH3 enzyme is responsible for sialidase activity in Gardnerella spp. isolates. Almost all G. piotii isolates displayed a sialidase positive phenotype, whereas the majority of G. vaginalis strains were sialidase negative. G. leopoldii and G. swidskinskii displayed a sialidase negative phenotype. ß-galactosidase is produced exclusively in G. vaginalis strains. Earlier determined phenotypic characteristics associated with virulence of Gardnerella isolates now assigned to the defined species may provide insights on how diverse species contribute to shaping the vaginal microbiome.
RESUMEN
Plant-parasitic nematodes are a continuing threat to food security, causing an estimated 100 billion USD in crop losses each year. The most problematic are the obligate sedentary endoparasites (primarily root knot nematodes and cyst nematodes). Progress in understanding their biology is held back by a lack of tools for functional genetics: forward genetics is largely restricted to studies of natural variation in populations and reverse genetics is entirely reliant on RNA interference. There is an expectation that the development of functional genetic tools would accelerate the progress of research on plant-parasitic nematodes, and hence the development of novel control solutions. Here, we develop some of the foundational biology required to deliver a functional genetic tool kit in plant-parasitic nematodes. We characterize the gonads of male Heterodera schachtii and Meloidogyne hapla in the context of spermatogenesis. We test and optimize various methods for the delivery, expression, and/or detection of exogenous nucleic acids in plant-parasitic nematodes. We demonstrate that delivery of macromolecules to cyst and root knot nematode male germlines is difficult, but possible. Similarly, we demonstrate the delivery of oligonucleotides to root knot nematode gametes. Finally, we develop a transient expression system in plant-parasitic nematodes by demonstrating the delivery and expression of exogenous mRNA encoding various reporter genes throughout the body of H. schachtii juveniles using lipofectamine-based transfection. We anticipate these developments to be independently useful, will expedite the development of genetic modification tools for plant-parasitic nematodes, and ultimately catalyze research on a group of nematodes that threaten global food security.
Asunto(s)
Arabidopsis , Tylenchoidea , Animales , Arabidopsis/genética , Masculino , Enfermedades de las Plantas , Interferencia de ARN , ARN Mensajero , Tylenchoidea/genéticaRESUMEN
BACKGROUND: The root lesion nematode Pratylenchus penetrans is a migratory plant-parasitic nematode responsible for economically important losses in a wide number of crops. Despite the importance of P. penetrans, the molecular mechanisms employed by this nematode to promote virulence remain largely unknown. RESULTS: Here we generated a new and comprehensive esophageal glands-specific transcriptome library for P. penetrans. In-depth analysis of this transcriptome enabled a robust identification of a catalogue of 30 new candidate effector genes, which were experimentally validated in the esophageal glands by in situ hybridization. We further validated the expression of a multifaceted network of candidate effectors during the interaction with different plants. To advance our understanding of the "effectorome" of P. penetrans, we adopted a phylogenetic approach and compared the expanded effector repertoire of P. penetrans to the genome/transcriptome of other nematode species with similar or contrasting parasitism strategies. Our data allowed us to infer plausible evolutionary histories that shaped the effector repertoire of P. penetrans, as well as other close and distant plant-parasitic nematodes. Two remarkable trends were apparent: 1) large scale effector birth in the Pratylenchidae in general and P. penetrans in particular, and 2) large scale effector death in sedentary (endo) plant-parasitic nematodes. CONCLUSIONS: Our study doubles the number of validated Pratylenchus penetrans effectors reported in the literature. The dramatic effector gene gain in P. penetrans could be related to the remarkable ability of this nematode to parasitize a large number of plants. Our data provide valuable insights into nematode parasitism and contribute towards basic understating of the adaptation of P. penetrans and other root lesion nematodes to specific host plants.
Asunto(s)
Transcriptoma , Tylenchoidea , Animales , Proteínas del Helminto/genética , Filogenia , Enfermedades de las Plantas , Tylenchoidea/genéticaRESUMEN
The synthesis of rare anionic heteroleptic and homoleptic α-diimine iron complexes is described. Heteroleptic BIAN (bis(aryl)iminoacenaphthene) complexes 1-[K([18]c-6)(thf)0.5] and 2-[K([18]c-6)(thf)2] were synthesized by reduction of the [(BIAN)FeBr2] precursor complex using stoichiometric amounts of potassium graphite in the presence of the corresponding olefin. The electronic structure of these paramagnetic species was investigated by numerous spectroscopic analyses (NMR, EPR, 57Fe Mössbauer, UV-vis), magnetic measurements (Evans NMR method, SQUID), and theoretical techniques (DFT, CASSCF). Whereas anion 1 is a low-spin complex, anion 2 consists of an intermediate-spin Fe(III) center. Both complexes are efficient precatalysts for the hydroboration of carbonyl compounds under mild reaction conditions. The reaction of bis(anthracene) ferrate(1-) gave the homoleptic BIAN complex 3-[K([18]c-6)(thf)], which is less catalytically active. The electronic structure was elucidated with the same techniques as described for complexes 1-[K([18]c-6)(thf)0.5] and 2-[K([18]c-6)(thf)2] and revealed an Fe(II) species in a quartet ground state.
RESUMEN
Candida auris is an emerging opportunistic yeast species causing nosocomial outbreaks at a global scale. A few studies have focused on the C. auris genotypic structure. Here, we compared five epidemiological typing tools using a set of 96 C. auris isolates from 14 geographical areas. Isolates were analyzed by microsatellite typing, ITS sequencing, amplified fragment length polymorphism (AFLP) fingerprint analysis, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and Fourier-transform infrared (FTIR) spectroscopy methods. Microsatellite typing grouped the isolates into four main clusters, corresponding to the four known clades in concordance with whole genome sequencing studies. The other investigated typing tools showed poor performance compared with microsatellite typing. A comparison between the five methods showed the highest agreement between microsatellite typing and ITS sequencing with 45% similarity, followed by microsatellite typing and the FTIR method with 33% similarity. The lowest agreement was observed between FTIR spectroscopy, MALDI-TOF MS, and ITS sequencing. This study indicates that microsatellite typing is the tool of choice for C. auris outbreak investigations. Additionally, FTIR spectroscopy requires further optimization and evaluation before it can be used as an epidemiological typing method, comparable with microsatellite typing, as a rapid method for tracing nosocomial fungal outbreaks.