Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Foods ; 10(2)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562402

RESUMEN

Cold-smoked salmon is a widely consumed ready-to-eat seafood product that is a fragile commodity with a long shelf-life. The microbial ecology of cold-smoked salmon during its shelf-life is well known. However, to our knowledge, no study on the microbial ecology of cold-smoked salmon using next-generation sequencing has yet been undertaken. In this study, cold-smoked salmon microbiotas were investigated using a polyphasic approach composed of cultivable methods, V3-V4 16S rRNA gene metabarcoding and chemical analyses. Forty-five cold-smoked salmon products processed in three different factories were analyzed. The metabarcoding approach highlighted 12 dominant genera previously reported as fish spoilers: Firmicutes Staphylococcus, Carnobacterium, Lactobacillus, ß-Proteobacteria Photobacterium, Vibrio, Aliivibrio, Salinivibrio, Enterobacteriaceae Serratia,Pantoea, γ-Proteobacteria Psychrobacter, Shewanella and Pseudomonas. Specific operational taxonomic units were identified during the 28-day storage study period. Operational taxonomic units specific to the processing environment were also identified. Although the 45 cold-smoked salmon products shared a core microbiota, a processing plant signature was found. This suggest that the bacterial communities of cold-smoked salmon products are impacted by the processing environment, and this environment could have a negative effect on product quality. The use of a polyphasic approach for seafood products and food processing environments could provide better insights into residential bacteria dynamics and their impact on food safety and quality.

2.
Food Microbiol ; 95: 103705, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33397623

RESUMEN

Amplicon sequencing approaches have been widely used in food bacterial ecology. However, choices regarding the methodology can bias results. In this study, bacterial communities associated with cold-smoked salmon products and their processing plant surfaces were monitored via sequencing of the V3-V4 region of the 16S rRNA gene. The impact of DNA extraction protocols, sampling methods (swabbing or sponging) and surface materials on bacterial communities were investigated. α and ß diversity analyses revealed that DNA extraction methods mainly influence the observed cold-smoked salmon microbiota composition. Moreover, different DNA extraction methods revealed significant differences in observed community richness and evenness. ß-Proteobacteria: Photobacterium, Serratia and Firmicutes: Brochothrix, Carnobacterium and Staphylococcus were identified as the dominant genera. Surface microbiota richness, diversity and composition were mainly affected by cleaning and disinfection procedures but not by DNA extraction methods. Surface community richness and evenness appeared higher when sampled by sponging compared to swabbing. ß-diversity analyses highlighted that surface topology, cleaning and disinfection and sampling devices seemed to affect the bacterial community composition. The dominant surface bacteria identified were mainly Flavobacteriaceae, ß-Proteobacteria and γ-Proteobacteria described as fish spoilers such as Acinetobacter, Pseudomonas and Shewanella. DNA extraction and sampling methods can have an impact on sequencing results and the ecological analysis of bacterial community structures. This study confirmed the importance of methodology standardization and the need for analytical validation before 16S rDNA metabarcoding surveys.


Asunto(s)
Bacterias/aislamiento & purificación , ADN Bacteriano/aislamiento & purificación , Productos Pesqueros/microbiología , Técnicas Genéticas , Microbiota , ARN Ribosómico 16S/aislamiento & purificación , Salmón/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , ADN Bacteriano/genética , ADN Ribosómico/genética , ADN Ribosómico/aislamiento & purificación , Manipulación de Alimentos/instrumentación , ARN Ribosómico 16S/genética
3.
Front Microbiol ; 11: 590902, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343530

RESUMEN

The rise of antibiotic resistance is not only a challenge for human and animal health treatments, but is also posing the risk of spreading among bacterial populations in foodstuffs. Farmed fish-related foodstuffs, the food of animal origin most consumed worldwide, are suspected to be a reservoir of antibiotic resistance genes and resistant bacterial hazards. However, scant research has been devoted to the possible sources of diversity in fresh fillet bacterial ecosystems (farm environment including rivers and practices, and factory environment). In this study bacterial communities and the antibiotic resistance genes of fresh rainbow trout fillet were described using amplicon sequencing of the V3-V4 region of the 16S rRNA gene and high-throughput qPCR assay. The antibiotic residues were quantified using liquid chromatography/mass spectrometry methods. A total of 56 fillets (composed of muscle and skin tissue) from fish raised on two farms on the same river were collected and processed under either factory or laboratory sterile filleting conditions. We observed a core-bacterial community profile on the fresh rainbow trout fillets, but the processing conditions of the fillets has a great influence on their mean bacterial load (3.38 ± 1.01 log CFU/g vs 2.29 ± 0.72 log CFU/g) and on the inter-individual diversity of the bacterial community. The bacterial communities were dominated by Gamma- and Alpha-proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. The most prevalent genera were Pseudomonas, Escherichia-Shigella, Chryseobacterium, and Carnobacterium. Of the 73 antibiotic residues searched, only oxytetracycline residues were detected in 13/56 fillets, all below the European Union maximum residue limit (6.40-40.20 µg/kg). Of the 248 antibiotic resistance genes searched, 11 were found to be present in at least 20% of the fish population (tetracycline resistance genes tetM and tetV, ß-lactam resistance genes bla DHA and bla ACC, macrolide resistance gene mphA, vancomycin resistance genes vanTG and vanWG and multidrug-resistance genes mdtE, mexF, vgaB and msrA) at relatively low abundances calculated proportionally to the 16S rRNA gene.

4.
Front Microbiol ; 9: 684, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29681897

RESUMEN

Listeria monocytogenes is an ubiquitous pathogenic bacterium, transmissible to humans through the consumption of contaminated food. The pork production sector has been hit hard by a series of L. monocytogenes-related food poisoning outbreaks in France. An overview of the diversity of strains circulating at all levels of the pork production chain, from pig farming (PF) to finished food products (FFP), is needed to identify the contamination routes and improve food safety. Until now, no typing data has been available on strains isolated across the entire pig and pork production chain. Here, we analyzed the population genetic structure of 687 L. monocytogenes strains isolated over the last 20 years in virtually all the French départements from three compartments of this production sector: PF, the food processing environment (FPE), and FFP. The genetic structure was described based on Multilocus sequence typing (MLST) clonal complexes (CCs). The CCs were obtained by mapping the PFGE profiles of the strains. The distribution of CCs was compared firstly between the three compartments and then with CCs obtained from 1106 strains isolated from other food production sectors in France. The predominant CCs of pig and pork strains were not equally distributed among the three compartments: the CC37, CC59, and CC77 strains, rarely found in FPE and FFP, were prevalent in PF. The two most prevalent CCs in the FPE and FFP compartments, CC9 and CC121, were rarely or never detected in PF. No CC was exclusively associated with the pork sector. Three CCs (CC5, CC6, and CC2) were considered ubiquitous, because they were observed in comparable proportions in all food production sectors. The two most prevalent CCs in all sectors were CC9 and CC121, but their distribution was disparate. CC9 was associated with meat products and food products combining several food categories, whereas CC121 was not associated with any given sector. Based on these results, CC121 is likely able to colonize a larger diversity of food products than CC9. Both CCs being associated with the food production suggests, that certain processing steps, such as slaughtering or stabilization treatments, favor their settlement and the recontamination of the food produced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA