Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Radiat Res ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899572

RESUMEN

Small fractions of patients suffer from radiotherapy late severe adverse events (AEs Grade ≥ 3), which are usually irreversible and badly affect their quality of life. A novel functional DNA repair assay characterizing several steps of double-strand break (DSB) repair mechanisms was used. DNA repair activities of peripheral blood mononuclear cells were monitored for 1 week using NEXT-SPOT assay in 177 breast and prostate cancer patients. Only seven patients had Grade ≥ 3 AEs, 6 months after radiotherapy initiation. The machine learning method established the importance of variables among demographic, clinical and DNA repair data. The most relevant ones, all related to DNA repair, were employed to build a predictor. Predictors constructed with random forest and minimum bounding sphere predicted late Grade ≥ 3 AEs with a sensitivity of 100% and specificity of 77.17 and 86.22%, respectively. This multiplex functional approach strongly supports a dominant role for DSB repair in the development of chronic AEs. It also showed that affected patients share specific features related to functional aspects of DSB repair. This strategy may be suitable for routine clinical analysis and paves the way for modelling DSB repair associated with severe AEs induced by radiotherapy.

2.
Sci Rep ; 12(1): 20054, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414637

RESUMEN

The repair of DNA double-strand breaks (DSBs) involves interdependent molecular pathways, of which the choice is crucial for a cell's fate when facing a damage. Growing evidence points toward the fact that DSB repair capacities correlate with disease aggressiveness, treatment response and treatment-related toxicities in cancer. Scientific and medical communities need more easy-to-use and efficient tools to rapidly estimate DSB repair capacities from a tissue, enable routine-accessible treatment personalization, and hopefully, improve survival. Here, we propose a new functional biochip assay (NEXT-SPOT) that characterizes DSB repair-engaged cellular pathways and provides qualitative and quantitative information on the contribution of several pathways in less than 2 h, from 10 mg of cell lysates. We introduce the NEXT-SPOT technology, detail the molecular characterizations of different repair steps occurring on the biochip, and show examples of DSB repair profiling using three cancer cell lines treated or not with a DSB-inducer (doxorubicin) and/or a DNA repair inhibitor (RAD51 inhibitor; DNA-PK inhibitor; PARP inhibitor). Among others, we demonstrate that NEXT-SPOT can accurately detect decreased activities in strand invasion and end-joining mechanisms following DNA-PK or RAD51 inhibition in DNA-PK-proficient cell lines. This approach offers an all-in-one reliable strategy to consider DSB repair capacities as predictive biomarkers easily translatable to the clinic.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Quinasa Activada por ADN/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas , ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...