Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Prog Mol Biol Transl Sci ; 199: 271-296, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37678974

RESUMEN

It is urgent to prepare and store large numbers of clinical trial grade human pluripotent stem (hPS) cells for off-the-shelf use in stem cell therapies. However, stem cell banks, which store off-the-shelf stem cells, need financial support and large amounts of technicians for daily cell maintenance. Therefore, it is valuable to create "universal" or "hypoimmunogenic" hPS cells with genome editing engineering by knocking in or out immune-related genes. Only a small number of universal or hypoimmunogenic hPS cell lines should be needed to store for off-the-shelf usage and reduce the large amounts of instruments, consumables and technicians. In this article, we consider how to create hypoimmunogenic or universal hPS cells as well as the demerits of the technology. ß2-Microglobulin-knockout hPS cells did not harbor human leukocyte antigen (HLA)-expressing class I cells but led to the activation of natural killer cells. To escape the activities of macrophages and natural killer cells, homozygous hPS cells having a single allele of an HLA class I gene, such as HLA-C, were proposed. Major HLA class Ia molecules were knocked out, and CD47, HLA-G and PD-L1 were knocked in hPS cells utilizing CRISPR/Cas9 genome editing. Finally, some researchers are trying to generate universal hPS cells without genome editing. The cells evaded the activation of not only T cells but also macrophages and natural killer cells. These universal hPS cells have high potential for application in cell therapy.


Asunto(s)
Células Madre Pluripotentes , Trasplante de Células Madre , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/inmunología , Células Madre Pluripotentes/metabolismo , Antígenos HLA , Humanos , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Edición Génica , Técnicas de Sustitución del Gen , Animales , Inmunología del Trasplante , Bancos de Muestras Biológicas
2.
J Mater Chem B ; 11(7): 1434-1444, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36541288

RESUMEN

Human pluripotent stem cells (hPSCs) have the ability to differentiate into cells derived from three germ layers and are an attractive cell source for cell therapy in regenerative medicine. However, hPSCs cannot be cultured on conventional tissue culture flasks but can be cultured on biomaterials with specific hPSC integrin interaction sites. We designed hydrogels conjugated with several designed peptides that had laminin-ß4 active sites, optimal elasticities and different zeta potentials. A higher expansion fold of hPSCs cultured on the hydrogels was found with the increasing zeta potential of the hydrogels conjugated with designed peptides, where positive amino acid (lysine) insertion into the peptides promoted higher zeta potentials of the hydrogels and higher expansion folds of hPSCs when cultured on the hydrogels using xeno-free protocols. The hPSCs cultured on hydrogels conjugated with the optimal peptides showed a higher expansion fold than those on recombinant vitronectin-coated plates, which are the gold standard of hPSC cultivation dishes. The hPSCs could differentiate into specific cell lineages, such as mesenchymal stem cells (MSCs) and MSC-derived osteoblasts, even after being cultivated on hydrogels conjugated with optimal peptides for long periods of time, such as 10 passages.


Asunto(s)
Hidrogeles , Células Madre Pluripotentes , Humanos , Hidrogeles/química , Proliferación Celular , Células Madre Pluripotentes/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...