Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Br Poult Sci ; 64(6): 751-762, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37782109

RESUMEN

1. It was hypothesised that dietary N-acetyl-L-cysteine (NAC) in feed, as a source of cysteine, could improve the performance of heat-stressed finisher broilers by fostering glutathione (GSH) synthesis. GSH is the most abundant intracellular antioxidant for which the sulphur amino acid cysteine is rate limiting for its synthesis.2. In the first experiment, four levels of NAC: 0, 500, 1000 and 2000 mg/kg were added to a diet with a suboptimal level of sulphur amino acids in the finisher phase. In the second experiment, NAC was compared to other sulphur amino acid sources at equal molar amounts of digestible sulphur amino acids. Birds were allocated to four groups: control, 2000 mg/kg NAC, 1479 mg/kg L-cystine, and 2168 mg/kg Ca-salt of 2-hydroxy-4-(methylthio)butanoic acid. A chronic cyclic heat stress model (temperature was increased to 34°C for 7 h daily) was initiated at 28 d of age.3. In the first experiment, growth performance and feed efficiency in the finisher phase were significantly improved by graded NAC. ADG was 88.9, 92.2, 93.7 and 97.7 g/d, and the feed-to-gain ratio was 2.18, 1.91, 1.85 and 1.81 for the 0, 500, 1000 and 2000 mg/kg NAC treatments, respectively. However, liver and heart GSH levels were not affected by NAC. On d 29, liver gene transcript of cystathionine-beta-synthase like was reduced by NAC, which suggested reduced trans-sulphuration activity. The second experiment showed that L-cystine and Ca-salt of 2-hydroxy-4-(methylthio) butanoic acid were more effective in improving performance than NAC.4. In conclusion, N-acetyl-L-cysteine improved dose-dependently growth and feed efficiency in heat-stressed finishing broilers. However, this was not associated with changes in tissue GSH levels, but more likely worked by sparing methionine and/or NAC's and cysteine's direct antioxidant properties.


Asunto(s)
Acetilcisteína , Aminoácidos Sulfúricos , Animales , Antioxidantes/metabolismo , Pollos , Cistina , Glutatión , Dieta/veterinaria , Respuesta al Choque Térmico , Butiratos , Suplementos Dietéticos , Alimentación Animal/análisis
2.
Poult Sci ; 102(6): 102653, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37030259

RESUMEN

Dietary guanidinoacetic acid (GAA) has been shown to affect creatine (Cr) metabolic pathways resulting in increased cellular Cr and hitherto broiler performances. Yet, the impact of dietary GAA on improving markers of oxidative status remains equivocal. A model of chronic cyclic heat stress, known to inflict oxidative stress, was employed to test the hypothesis that GAA could modify bird's oxidative status. A total of 720-day-old male Ross 308 broilers were allocated to 3 treatments: 0, 0.6 or 1.2 g/kg GAA was added to corn-SBM diets and fed for 39 d, with 12 replicates (20 birds each) per treatment. The chronic cyclic heat stress model (34°C with 50-60% RH for 7 h daily) was applied in the finisher phase (d 25-39). Samples from 1 bird per pen were taken on d 26 (acute heat stress) and d 39 (chronic heat stress). GAA and Cr in plasma were linearly increased by feeding GAA on either sampling day, illustrating efficient absorption and methylation, respectively. Energy metabolism in breast and heart muscle was greatly supported as visible by increased Cr and phosphocreatine: ATP, thus providing higher capacity for rapid ATP generation in cells. Glycogen stores in breast muscle were linearly elevated by incremental GAA, on d 26 only. More Cr seems to be directed to heart muscle as opposed to skeletal muscle during chronic heat stress as tissue Cr was higher in heart but lower in breast muscle on d 39 as opposed to d 26. The lipid peroxidation marker malondialdehyde, and the antioxidant enzymes superoxide dismutase and glutathione peroxidase showed no alterations by dietary GAA in plasma. Opposite to that, superoxide dismutase activity in breast muscle was linearly lowered when feeding GAA (trend on d 26, effect on d 39). Significant correlations between the assessed parameters and GAA inclusion were identified on d 26 and d 39 using principal component analysis. To conclude, beneficial performance in heat-stressed broilers by GAA is associated with enhanced muscle energy metabolism which indirectly may also support tolerance against oxidative stress.


Asunto(s)
Creatina , Suplementos Dietéticos , Animales , Masculino , Suplementos Dietéticos/análisis , Creatina/metabolismo , Pollos/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Estrés Oxidativo , Respuesta al Choque Térmico , Superóxido Dismutasa/metabolismo , Adenosina Trifosfato , Alimentación Animal/análisis
3.
Poult Sci ; 99(9): 4442-4453, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32867988

RESUMEN

It was hypothesized that dietary guanidinoacetic acid (GAA), the precursor of creatine (Cr), would be beneficial to heat-stressed finisher broilers owing to improved cellular energy status and arginine sparing effects. A total of 720 one-day-old male Ross 308 broilers were allocated to 3 treatments, 0 (control), 0.6, or 1.2 g/kg of GAA added to complete corn-soybean meal diets, and were fed for 39 D, with 12 replicates (20 birds each) per treatment. A chronic cyclic heat stress model (at a temperature of 34°C and 50 to 60% relative humidity for 7 h daily) was applied in the finisher phase (day 25-39). Samples were taken on day 26 and 39 to determine thrombocyte, white blood cell, corticosterone, protein and amino acid levels in blood and Cr, phosphocreatine (PCr), and adenosine triphosphate levels in the breast muscle. Meat quality was assessed on day 40 after overnight fasting. Guanidinoacetic acid at a dose of 1.2 g/kg decreased feed-to-gain ratio compared with the control in the grower phase (1.32 vs. 1.35, respectively; P <0.05). In the finisher period, the supplementation of 1.2 g/kg of GAA reduced feed intake compared with the control (-3.3%, P <0.05), whereas both GAA supplementation levels improved feed efficiency markedly (1.76, 1.66, and 1.67 for 0 [control], 0.6, and 1.2 g/kg of GAA, respectively, P <0.05). Mortality outcomes highlight that GAA feeding improved survival during heat stress, supported by lower panting frequency (linear effect, P <0.05). Plasma arginine was higher with increase in dietary GAA concentration on day 26 (+18.3 and + 30.8% for 0.6 and 1.2 g/kg of GAA, respectively; P <0.05). This suggests enhanced availability of arginine for other metabolic purposes than de novo GAA formation. In the breast muscle, PCr (day 39, P <0.05), free Cr (day 39, P <0.05), total Cr (both days, P <0.05), and PCr-to-adenosine triphosphate ratio (day 39, P <0.05) levels were increased with higher GAA content in diet. Guanidinoacetic acid supplementation improved feed conversion and survival during chronic cyclic heat stress, which may be associated with enhanced breast muscle energy status and arginine sparing effect.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Pollos , Suplementos Dietéticos , Metabolismo Energético , Glicina/análogos & derivados , Respuesta al Choque Térmico , Alimentación Animal , Animales , Arginina/metabolismo , Creatina/metabolismo , Dieta/veterinaria , Metabolismo Energético/efectos de los fármacos , Glicina/farmacología , Respuesta al Choque Térmico/efectos de los fármacos , Masculino
4.
Br Poult Sci ; 60(5): 554-563, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31190558

RESUMEN

1. Guanidinoacetic acid (GAA) is the single endogenous precursor of creatine, which plays a critical role in energy homeostasis of cells. Since GAA is endogenously converted to creatine by methylation, it was hypothesised that the effects of dietary GAA supplementation might determine the methionine (Met) availability in corn-soybean based diets. 2. A total of 540, one-day-old male Ross 308 broilers were allocated to nine dietary treatments with six replicates (10 birds each) in a 3 × 3 factorial arrangement with three graded levels of supplementary Met (+0.4 g/kg per level), whilst cystine was equal across groups, resulting in a low, medium and high level of total sulphur amino acids, and with three levels of GAA (0, 0.6 and 1.2 g/kg). Birds were fed for 42 days. 3. Increasing levels of supplemental Met enhanced performance indices in all rearing periods, although there was no effect on feed conversion ratio in the grower or feed intake in the finisher periods. Final body weight was 8.8% and 14.6% higher in the birds fed medium and high Met diets, respectively, compared to the low Met level. Relative breast weight and protein content in muscle on d 25 linearly increased with higher levels of Met. At low and high Met levels, growth in the finisher phase was negatively affected by supplementing GAA at 1.2 g/kg. It was suggested that disturbances in methylation homeostasis and/or changes in Arg metabolism might explain these findings. At the end of the grower phase, muscle creatine content was higher when feeding GAA at 0.6 and 1.2 g/kg (4464 and 4472, respectively, vs. 4054 mg/kg fresh muscle in the control group). 4. The effects of dietary GAA supplementation were influenced by the dietary Met level only in the finisher period, which indicates the need for proper sulphur amino acid formulation in diets when feeding GAA.


Asunto(s)
Pollos/fisiología , Glicina/análogos & derivados , Metionina/metabolismo , Músculos Pectorales/fisiología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Disponibilidad Biológica , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Metabolismo Energético/efectos de los fármacos , Glicina/administración & dosificación , Glicina/metabolismo , Masculino , Metionina/administración & dosificación , Tamaño de los Órganos/efectos de los fármacos , Músculos Pectorales/efectos de los fármacos , Distribución Aleatoria
5.
Br Poult Sci ; 59(4): 443-451, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29756995

RESUMEN

(1) Guanidinoacetic acid (GAA) is the single immediate endogenous precursor of creatine (Cr). It was hypothesised that dietary GAA would have different effects on performance and energy metabolites in breast muscle depending on the nutrient density (ND) of corn-soybean-based diets. (2) A total of 540 one-day-old male Ross 308 broilers were allocated to 9 dietary treatments with 6 replicates (10 birds each) in a 3 × 3 factorial arrangement with three levels of ND (low, 2800; medium, 2950 and high, 3100 kcal metabolizable energy (ME)/kg; and with the other nutrients being constant relative to ME) and supplemented with three levels of GAA (0, 0.6 and 1.2 g/kg) in a 42-d feeding trial. (3) In the starter and grower periods, increasing levels of ND improved body weight (BW), average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR), with the exception of ADFI in the starter period. GAA supplementation did not affect performance characteristics. All performance indicators responded markedly to increasing ND in the finisher period, whereas the highest GAA level reduced ADFI compared to the unsupplemented control (156 vs. 162 g/d) and concomitantly FCR (1.81 vs. 1.93). No interactive effects were noted for any performance trait. The high ND diet resulted in more breast meat yield on d42, associated with higher fat content and darker colour compared to the other ND levels. The GAA supplementation did not affect carcass and breast traits. At the end of the experiment, Cr was elevated when feeding GAA at 1.2 g/kg (5455 vs. 4338 mg/kg fresh muscle). (4) To conclude, ND had a substantial effect on performance and carcass traits, whereas any effect of GAA was limited to FCR in the finisher period and independent of diet ND level.


Asunto(s)
Pollos/fisiología , Metabolismo Energético/efectos de los fármacos , Glicina/análogos & derivados , Músculos Pectorales/efectos de los fármacos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Glicina/administración & dosificación , Glicina/metabolismo , Masculino , Músculos Pectorales/fisiología , Distribución Aleatoria , Glycine max/química , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...