RESUMEN
BACKGROUND: The Immunoscore (IS) is a quantitative digital pathology assay that evaluates the immune response in cancer patients. This study reports on the reproducibility of pathologists' visual assessment of CD3+- and CD8+-stained colon tumors, compared to IS quantification. METHODS: An international group of expert pathologists evaluated 540 images from 270 randomly selected colon cancer (CC) cases. Concordance between pathologists' T-score, corresponding hematoxylin-eosin (H&E) slides, and the digital IS was evaluated for two- and three-category IS. RESULTS: Non-concordant T-scores were reported in more than 92% of cases. Disagreement between semi-quantitative visual assessment of T-score and the reference IS was observed in 91% and 96% of cases before and after training, respectively. Statistical analyses showed that the concordance index between pathologists and the digital IS was weak in two- and three-category IS, respectively. After training, 42% of cases had a change in T-score, but no improvement was observed with a Kappa of 0.465 and 0.374. For the 20% of patients around the cut points, no concordance was observed between pathologists and digital pathology analysis in both two- and three-category IS, before or after training (all Kappa < 0.12). CONCLUSIONS: The standardized IS assay outperformed expert pathologists' T-score evaluation in the clinical setting. This study demonstrates that digital pathology, in particular digital IS, represents a novel generation of immune pathology tools for reproducible and quantitative assessment of tumor-infiltrated immune cell subtypes.
RESUMEN
BACKGROUND: Anti-PD-1 and PD-L1 antibodies (mAbs) are approved immunotherapy agents to treat metastatic non-small cell lung cancer (NSCLC) patients. Only a minority of patients responds to these treatments and biomarkers predicting response are currently lacking. METHODS: Immunoscore-Immune-Checkpoint (Immunoscore-IC), an in vitro diagnostic test, was used on 471 routine single FFPE-slides, and the duplex-immunohistochemistry CD8 and PD-L1 staining was quantified using digital-pathology. Analytical validation was performed on two independent cohorts of 206 NSCLC patients. Quantitative parameters related to cell location, number, proximity and clustering were analysed. The Immunoscore-IC was applied on a first cohort of metastatic NSCLC patients (n = 133), treated with anti-PD1 or anti-PD-L1 mAbs. Another independent cohort (n = 132) served as validation. FINDINGS: Anti-PDL1 clone (HDX3) has similar characteristics as anti-PD-L1 clones (22C3, SP263). Densities of PD-L1+ cells, CD8+ cells and distances between CD8+ and PD-L1+ cells were quantified and the Immunoscore-IC classification was computed. Using univariate Cox model, 5 histological dichotomised variables (CD8 free of PD-L1+ cells, CD8 clusters, CD8 cells in proximity of PD-L1 cells, CD8 density and PD-L1 cells in proximity of CD8 cells) were significantly associated with Progression-Free Survival (PFS) (all P < 0.0001). Immunoscore-IC classification improved the discriminating power of prognostic model, which included clinical variables and pathologist PD-L1 assessment. In two categories, the Immunoscore-IC risk-score was significantly associated with patients' PFS (HR = 0.39, 95% CI (0.26-0.59), P < 0.0001) and Overall Survival (OS) (HR = 0.42, 95% CI (0.27-0.65), P < 0.0001) in the training-set. Further increased hazard ratios (HR) were found when stratifying patients into three-category Immunoscore-IC (IS-IC). All patients with Low-IS-IC progressed in less than 18 months, whereas PFS at 36 months were 34% and 33% of High-IS-IC patients in the training and validation sets, respectively. INTERPRETATION: Immunoscore-IC is a powerful tool to predict the efficacy of immune-checkpoint inhibitors (ICIs) in patients with NSCLC. FUNDING: Veracyte, INSERM, Labex Immuno-Oncology, Transcan ERAnet European project, ARC, SIRIC, CARPEM, Ligue Contre le Cancer, ANR, QNRF, INCa France, Louis Jeantet Prize Foundation.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Anticuerpos Monoclonales/uso terapéutico , Antígeno B7-H1 , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inmunoterapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Pronóstico , Inhibidores de Puntos de Control Inmunológico/uso terapéuticoRESUMEN
OBJECTIVE: Receptor-interacting protein kinase 3 (RIPK3) is a key player in necroptosis execution and an emerging metabolic regulator, whose contribution to non-alcoholic fatty liver disease (NAFLD) is controversial. We aimed to clarify the impact of RIPK3 signalling in the pathogenesis of human and experimental NAFLD. DESIGN: RIPK3 levels were evaluated in two large independent cohorts of patients with biopsy proven NAFLD diagnosis and correlated with clinical and biochemical parameters. Wild-type (WT) or Ripk3-deficient (Ripk3-/-) mice were fed a choline-deficient L-amino acid-defined diet (CDAA) or an isocaloric control diet for 32 and 66 weeks. RESULTS: RIPK3 increased in patients with non-alcoholic steatohepatitis (NASH) in both cohorts, correlating with hepatic inflammation and fibrosis. Accordingly, Ripk3 deficiency ameliorated CDAA-induced inflammation and fibrosis in mice at both 32 and 66 weeks. WT mice on the CDAA diet for 66 weeks developed preneoplastic nodules and displayed increased hepatocellular proliferation, which were reduced in Ripk3-/- mice. Furthermore, Ripk3 deficiency hampered tumourigenesis. Intriguingly, Ripk3-/- mice displayed increased body weight gain, while lipidomics showed that deletion of Ripk3 shifted hepatic lipid profiles. Peroxisome proliferator-activated receptor γ (PPARγ) was increased in Ripk3-/- mice and negatively correlated with hepatic RIPK3 in patients with NAFLD. Mechanistic studies established a functional link between RIPK3 and PPARγ in controlling fat deposition and fibrosis. CONCLUSION: Hepatic RIPK3 correlates with NAFLD severity in humans and mice, playing a key role in managing liver metabolism, damage, inflammation, fibrosis and carcinogenesis. Targeting RIPK3 and its intricate signalling arises as a novel promising approach to treat NASH and arrest disease progression.
Asunto(s)
Metabolismo de los Lípidos/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Biomarcadores/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Progresión de la Enfermedad , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Estudios ProspectivosRESUMEN
Continuous cell death associated with inflammation is a key trigger of disease progression notably in chronic liver diseases such as non-alcoholic steatohepatitis (NASH). Apoptosis has been studied as a potential target for reducing cell death in NASH. However, recent studies suggest that caspase inhibition is inefficient to treat NASH patients and may aggravate the disease by redirecting cells to alternative mechanisms of cell death. Alternative forms of lytic cell death have recently been identified and are known to induce strong inflammatory responses due to cell membrane permeabilization. Therefore, controlling lytic cell death modes offers new opportunities for potential therapeutic intervention in NASH. This review summarizes the underlying molecular mechanisms of apoptosis and lytic cell death modes, including necroptosis, pyroptosis and ferroptosis, and discusses their relevance in NASH.
TITLE: Les mécanismes de mort cellulaire dans la stéatohépatite non alcoolique. ABSTRACT: La mort hépatocellulaire chronique et l'inflammation qui en résulte sont des évènements clés dans la progression de la stéatose hépatique non alcoolique (NAFL) vers la stéatohépatite non alcoolique (NASH). La NASH est un état sévère de la maladie qui est associé au développement de la fibrose et qui peut à terme évoluer vers la cirrhose et le cancer du foie. L'apoptose a initialement été étudiée comme cible potentielle pour réduire la mort des hépatocytes dans la NASH. Cependant, des études récentes suggèrent que l'inhibition des caspases est inefficace pour traiter les patients atteints de NASH et pourrait même aggraver la maladie en redirigeant les hépatocytes vers d'autres voies de mort cellulaire. De nouvelles formes de mort cellulaire dites lytiques ont récemment été identifiées et induisent de fortes réponses inflammatoires causées par la perméabilisation des membranes cellulaires. Le contrôle de ces voies de mort lytiques offre par conséquent de nouvelles opportunités thérapeutiques pour traiter la NASH. Cette revue résume les mécanismes moléculaires déclenchant l'apoptose et les voies de mort lytiques, parmi lesquelles la nécroptose, la pyroptose et la ferroptose, et discute de leur pertinence dans la NASH.
Asunto(s)
Apoptosis/fisiología , Hepatocitos/fisiología , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Muerte Celular/fisiología , Progresión de la Enfermedad , Hepatocitos/patología , Humanos , Inflamación/complicaciones , Inflamación/patologíaRESUMEN
BACKGROUND & AIMS: In non-alcoholic fatty liver disease (NAFLD), hepatocytes can undergo necroptosis: a regulated form of necrotic cell death mediated by the receptor-interacting protein kinase (RIPK) 1. Herein, we assessed the potential for RIPK1 and its downstream effector mixed lineage kinase domain-like protein (MLKL) to act as therapeutic targets and markers of activity in NAFLD. METHODS: C57/BL6J-mice were fed a normal chow diet or a high-fat diet (HFD). The effect of RIPA-56, a highly specific inhibitor of RIPK1, was evaluated in HFD-fed mice and in primary human steatotic hepatocytes. RIPK1 and MLKL concentrations were measured in the serum of patients with NAFLD. RESULTS: When used as either a prophylactic or curative treatment for HFD-fed mice, RIPA-56 caused a downregulation of MLKL and a reduction of liver injury, inflammation and fibrosis, characteristic of non-alcoholic steatohepatitis (NASH), as well as of steatosis. This latter effect was reproduced by treating primary human steatotic hepatocytes with RIPA-56 or necrosulfonamide, a specific inhibitor of human MLKL, and by knockout (KO) of Mlkl in fat-loaded AML-12 mouse hepatocytes. Mlkl-KO led to activation of mitochondrial respiration and an increase in ß-oxidation in steatotic hepatocytes. Along with decreased MLKL activation, Ripk3-KO mice exhibited increased activities of the liver mitochondrial respiratory chain complexes in experimental NASH. In patients with NAFLD, serum concentrations of RIPK1 and MLKL increased in correlation with activity. CONCLUSION: The inhibition of RIPK1 improves NASH features in HFD-fed mice and reverses steatosis via an MLKL-dependent mechanism that, at least partly, involves an increase in mitochondrial respiration. RIPK1 and MLKL are potential serum markers of activity and promising therapeutic targets in NAFLD. LAY SUMMARY: There are currently no pharmacological treatment options for non-alcoholic fatty liver disease (NAFLD), which is now the most frequent liver disease. Necroptosis is a regulated process of cell death that can occur in hepatocytes during NAFLD. Herein, we show that RIPK1, a gatekeeper of the necroptosis pathway that is activated in NAFLD, can be inhibited by RIPA-56 to reduce not only liver injury, inflammation and fibrosis, but also steatosis in experimental models. These results highlight the potential of RIPK1 as a therapeutic target in NAFLD.