Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258913

RESUMEN

A liver-on-a-chip model is an advanced complex in vitro model (CIVM) that incorporates different cell types and extracellular matrix to mimic the microenvironment of the human liver in a laboratory setting. Given the heterogenous and complex nature of liver-on-a-chip models, brightfield and fluorescence-based imaging techniques are widely utilized for assessing the changes occurring in these models with different treatment and environmental conditions. However, the utilization of optical microscopy techniques for structural and functional evaluation of the liver CIVMs have been limited by the reduced light penetration depth and lack of 3D information obtained using these imaging techniques. In this study, the potential of both labelled as well as label-free multimodal optical imaging techniques for visualization and characterization of the cellular and sub-cellular features of a liver-on-a-chip model was investigated. (1) Cellular uptake and distribution of Alexa 488 (A488)-labelled non-targeted and targeted antisense oligonucleotides (ASO and ASO-GalNAc) in the liver-on-a-chip model was determined using multiphoton microscopy. (2) Hyperspectral stimulated Raman scattering (SRS) microscopy of the C-H region was used to determine the heterogeneity of chemical composition of circular and cuboidal hepatocytes in the liver-on-a-chip model in a label-free manner. Additionally, the spatial overlap between the intracellular localization of ASO and lipid droplets was explored using simultaneous hyperspectral SRS and fluorescence microscopy. (3) The capability of light sheet fluorescence microscopy (LSFM) for full-depth 3D visualization of sub-cellular distribution of A488-ASO and cellular phenotypes in the liver-on-a-chip model was demonstrated. In summary, multimodal optical microscopy is a promising platform that can be utilized for visualization and quantification of 3D cellular organization, drug distribution and functional changes occurring in liver-on-a-chip models, and can provide valuable insights into liver biology and drug uptake mechanisms by enabling better characterization of these liver models.

2.
Anal Chem ; 96(25): 10294-10301, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38864171

RESUMEN

The successful application of matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in pharmaceutical research is strongly dependent on the detection of the drug of interest at physiologically relevant concentrations. Here we explored how insufficient sensitivity due to low ionization efficiency and/or the interaction of the drug molecule with the local biochemical environment of the tissue can be mitigated for many compound classes using the recently introduced MALDI-MSI coupled with laser-induced postionization, known as MALDI-2-MSI. Leveraging a MALDI-MSI screen of about 1,200 medicines/drug-like compounds from a broad range of medicinal application areas, we demonstrate a significant improvement in drug detection and the degree of sensitivity uplift by using MALDI-2 versus traditional MALDI. Our evaluation was made under simulated imaging conditions using liver homogenate sections as substrate, onto which the compounds were spotted to mimic biological conditions to the first order. To enable an evaluable detection by both MALDI and MALDI-2 for the majority of employed compounds, we spotted 1 µL of a 10 mM solution using a spotting robot and performed our experiments with a Bruker timsTOF fleX MALDI-2 instrument in both positive and negative ion modes. Specifically, we demonstrate using a large cohort of drug-like compounds that ∼60% of the tested compounds showed a more than 10-fold increase in signal intensity and ∼16% showed a more than 100-fold increase upon use of MALDI-2 postionization. Such increases in sensitivity could help advance pharmaceutical MALDI-MSI applications toward the single-cell level.


Asunto(s)
Hígado , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Hígado/química , Evaluación Preclínica de Medicamentos
3.
Nanoscale ; 16(5): 2490-2503, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197438

RESUMEN

Gene silencing using small interfering RNAs (siRNAs) is a selective and promising approach for treatment of numerous diseases. However, broad applications of siRNAs are compromised by their low stability in a biological environment and limited ability to penetrate cells. Nanodiamonds (NDs) coated with cationic polymers can enable cellular delivery of siRNAs. Recently, we developed a new type of ND coating based on a random copolymer consisting of (2-dimethylaminoethyl) methacrylate (DMAEMA) and N-(2-hydroxypropyl) methacrylamide (HPMA) monomers. These hybrid ND-polymer particles (Cop+-FND) provide near-infrared fluorescence, form stable complexes with siRNA in serum, show low toxicity, and effectively deliver siRNA into cells in vitro and in vivo. Here, we present data on the mechanism of cellular uptake and cell trafficking of Cop+-FND : siRNA complexes and their ability to selectively suppress mRNA levels, as well as their cytotoxicity, viability and colloidal stability. We identified clathrin-mediated endocytosis as the predominant entry mechanism for Cop+-FND : siRNA into U-2 OS human bone osteosarcoma cells, with a substantial fraction of Cop+-FND : siRNA following the lysosome pathway. Cop+-FND : siRNA potently inhibited the target GAPDH gene with negligible toxicity and sufficient colloidal stability. Based on our results, we suggest that Cop+-FND : siRNA can serve as a suitable in vivo delivery system for siRNA.


Asunto(s)
Etilaminas , Metacrilatos , Nanodiamantes , Polímeros , Humanos , ARN Interferente Pequeño/metabolismo , Línea Celular Tumoral , Cationes
4.
Anal Chem ; 95(29): 10957-10965, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37450658

RESUMEN

Understanding drug fingerprints in complex biological samples is essential for the development of a drug. Hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) microscopy, a label-free nondestructive chemical imaging technique, can profile biological samples based on their endogenous vibrational contrast. Here, we propose a deep learning-assisted HS-CARS imaging approach for the investigation of drug fingerprints and their localization at single-cell resolution. To identify and localize drug fingerprints in complex biological systems, an attention-based deep neural network, hyperspectral attention net (HAN), was developed. By formulating the task to a multiple instance learning problem, HAN highlights informative regions through the attention mechanism when being trained on whole-image labels. Using the proposed technique, we investigated the drug fingerprints of a hepatitis B virus therapy in murine liver tissues. With the increase in drug dosage, higher classification accuracy was observed, with an average area under the curve (AUC) of 0.942 for the high-dose group. Besides, highly informative tissue structures predicted by HAN demonstrated a high degree of similarity with the drug localization shown by the in situ hybridization staining results. These results demonstrate the potential of the proposed deep learning-assisted optical imaging technique for the label-free profiling, identification, and localization of drug fingerprints in biological samples, which can be extended to nonperturbative investigations of complex biological systems under various biological conditions.


Asunto(s)
Microscopía , Espectrometría Raman , Animales , Ratones , Microscopía/métodos , Espectrometría Raman/métodos , Hígado , Redes Neurales de la Computación
5.
Appl Spectrosc ; 77(3): 246-260, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36320126

RESUMEN

Quantitative analysis of drug delivery with in biological systems is an integral challenge in drug development. Analytical techniques are important for assessing both drug target delivery, target action, and drug toxicology. Using mimetic tissue models, we have investigated the efficacy of Raman spectroscopy in quantitative detection of alkyne group and deuterated drugs in rat brain and rat liver tissue models. Lasers with 671 nm and 785 nm wavelengths were assessed for their feasibility in this application due to opposing relative benefits and disadvantages. Thin tissue sections have been tested as a practical means of reducing autofluorescent background by minimizing out-of-focus tissue and therefore maximizing photobleaching rates. Alkyne-tagged drugs were quantitatively measured at 18 ± 5 µg/g drug/tissue mass ratio in rat brain and at 34 ± 6 µg/g in rat liver. Quantification calibration curves were generated for a range of concentrations from 0-500 µg/g. These results show the potential of Raman spectroscopy as a diffraction-limited spatially resolved imaging technique for assessing drug delivery in tissue applications.


Asunto(s)
Hígado , Espectrometría Raman , Preparaciones Farmacéuticas , Espectrometría Raman/métodos , Encéfalo , Alquinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...