Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(11): 113523, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461475

RESUMEN

Trapped electron mode (TEM) is the main source of turbulence predicted for the unique operation regime of a flat temperature profile under low-recycling conditions in the LTX-ß tokamak, while ion temperature gradient driven turbulence may also occur with gas fueling from the edge. To investigate mainly TEM scale density fluctuations, a high spatial and time resolution 2D beam emission spectroscopy (BES) diagnostic is being developed. Apart from spatially localized density turbulence measurement, BES can provide turbulence flow and flow shear dynamics. This BES system will be realized using an avalanche photodiode-based camera and narrow band interference filter. The system can acquire data at 2 MHz. Simulations with the Simulation of Spectra (SOS) code indicate that a high signal to noise ratio can be achieved with the proposed system. This will enable sampling the density fluctuations at this high time resolution. The design considerations and system optimization using the SOS code are presented.

2.
Rev Sci Instrum ; 91(2): 026104, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32113407

RESUMEN

We have demonstrated a vacuum suitcase to transport samples in vacuo to a surface analysis station for characterization of tokamak plasma facing components (PFCs). This technique enables surface analysis at powerful, dedicated stations that are not encumbered by design constraints imposed on them by a tokamak. The vacuum suitcase is an alternative solution to characterizing PFCs using diagnostics that are designed and built around a tokamak. The vacuum suitcase, called the Sample Exposure Probe (SEP), features mobile ultra-high vacuum pumping. Active pumping under high vacuum enables sample transfer between the Lithium Tokamak eXperiment-ß (LTX-ß) and a high resolution X-ray Photoelectron Spectroscopy (XPS) system that is situated close by. A thermocouple inserted in the back of the sample head measures heat flux from the plasma during exposure, and together with a button heater, allows the sample to match the LTX-ß PFCs in high temperature operations. As vacuum conditions are better during transfer and analysis than in the tokamak, less contamination is introduced to the samples. XPS scans on a dedicated analysis station enable peak identification due to higher resolution and signal to noise ratio. A similar probe could be implemented for other fusion devices. The SEP is the first vacuum suitcase implementation for fusion applications that incorporates active pumping.

3.
Rev Sci Instrum ; 89(10): 10D118, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399896

RESUMEN

The Lithium Tokamak eXperiment has undergone an upgrade to LTX-ß, a major part of which is the addition of neutral beam injection (NBI). NBI has allowed for a new charge exchange recombination spectroscopy (CHERS) system to be installed in order to measure impurity concentrations, ion temperature, and toroidal velocity. Previously on LTX measuring these parameters relied on passive spectroscopy and inversion techniques and had large uncertainty. The CHERS system has 52 total views, split into four groups of 13, half facing toward the beam and half symmetrically facing away from the beam, so the background non-beam related emission can be simultaneously subtracted. Both sets of views sample a major radius of 27-59 cm, with resolution through the beam of 1.5-2.5 cm. LTX-ß is expected to have its magnetic axis near 35 cm, with minor radii of 18-23 cm. Three separate spectrometers will be used for the diagnostic, giving the system great flexibility to simultaneously measure emission from multiple impurity lines. The viewing optics are f/1.8, allowing all of the spectrometers to be fully illuminated. Design and calibration of the system as well as the advantages of various configurations of the spectrometers will be highlighted.

4.
Rev Sci Instrum ; 89(10): 10J104, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399897

RESUMEN

Magnetic perturbation measurements will be invaluable for characterizing Lithium Tokamak Experiment Beta (LTX-ß) plasmas due to the time-evolving 3D nature of the magnetic fields generated by eddy currents in the vessel and copper shell segments, as well as enhanced MHD instability drive due to newly introduced neutral beam heating. The LTX-ß upgrade includes two new arrays of Mirnov coils: a shell eddy sensor array of two-axis coils distributed over the back surface of one shell segment and a toroidal array of poloidal field coils at the low-field side midplane gap. Evaporative lithium wall-coating and the high temperatures required for liquid lithium wall operation both complicate the implementation of in-vessel diagnostics. While the shell array is protected from lithium exposure, the shell segment to which it is mounted will at times exceed 300 °C. The toroidal array, however, will experience direct line-of-sight exposure to the lithium evaporator as well as close proximity to the hot shell and may also be subject to poorly confined beam-driven fast ions. We describe how the two new Mirnov coil arrays meet these environmental challenges and enhance the LTX-ß diagnostic suite.

5.
Rev Sci Instrum ; 89(10): 10H114, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399948

RESUMEN

The λ ≈ 1 mm (f = 288 GHz) interferometer for the Lithium Tokamak Experiment-ß (LTX-ß) will use a chirped-frequency source and a centerstack-mounted retro-reflector mirror to provide electron line density measurements along a single radial chord at the midplane. The interferometer is unique in the use of a single source (narrow-band chirped-frequency interferometry) and a single beam splitter for separating and recombining the probe and reference beams. The current work provides a documentation of the interferometry hardware and evaluates the capabilities of the system as a far-forward collective scattering diagnostic. As such, the current optical setup is estimated to have a detection range of 0.4 ≲ k ⊥ ≲ 1.7 cm-1, while an improved layout will extend the upper k ⊥ limit to ∼3 cm-1. Measurements with the diagnostic on LTX are presented, showing interferometry results and scattered signal data. These diagnostics are expected to provide routine measurements on LTX-ß for high frequency coherent density oscillations (e.g., Alfvénic modes during neutral beam injection) as well as for broadband turbulence.

6.
Phys Rev Lett ; 119(1): 015001, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28731732

RESUMEN

It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge (>200 eV) and flat electron temperature profiles have been measured following the termination of external fueling. Reduced recycling was demonstrated by retention of ∼60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with density after fueling terminated, ultimately exceeding the scaling by ∼200%. Achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.

7.
Rev Sci Instrum ; 88(5): 053502, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28571454

RESUMEN

The frequency-modulated continuous-wave reflectometer on LTX (Lithium Tokamak Experiment) and the data analysis methods used for determining electron density profiles are described. The diagnostic uses a frequency range of 13.1-33.5 GHz, for covering a density range of 0.21-1.4×1013 cm-3 (in O-mode polarization) with a time resolution down to 8 µs. The design of the diagnostic incorporates the concept of an "optimized" source frequency sweep, which minimizes the large variation in the intermediate frequency signal due to a long dispersive transmission line. The quality of the raw data is dictated by the tuning characteristics of the microwave sources, as well as the group delay ripple in the transmission lines, which can generate higher-order nonlinearities in the frequency sweep. Both effects are evaluated for our diagnostic and best practices are presented for minimizing "artifacts" generated in the signals. The quality of the reconstructed profiles is also improved using two additional data analysis methods. First, the reflectometer data are processed as a radar image, where clutter due to echoes from the wall and backscattering from density fluctuations can be easily identified and removed. Second, a weighed least-squares lamination algorithm POLAN (POLynomial ANalysis) is used to reconstruct the electron density profile. Examples of density profiles in LTX are presented, along with comparisons to measurements from the Thomson scattering and the λ = 1 mm interferometer diagnostics.

8.
Rev Sci Instrum ; 87(11): 11D614, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910593

RESUMEN

We performed an in situ calibration of the relative responsivity function of the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), while operating on the Lithium Tokamak Experiment (LTX) at Princeton Plasma Physics Laboratory. The calibration was accomplished by measuring oxygen lines, which are typically present in LTX plasmas. The measured spectral line intensities of each oxygen charge state were then compared to the calculated emission strengths given in the CHIANTI atomic database. Normalizing the strongest line in each charge state to the CHIANTI predictions, we obtained the differences between the measured and predicted values for the relative strengths of the other lines of a given charge state. We find that a 3rd degree polynomial function provides a good fit to the data points. Our measurements show that the responsivity between about 120 and 300 Švaries by factor of ∼30.

9.
Rev Sci Instrum ; 87(11): 11D624, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910428

RESUMEN

A project has been started at ORNL to develop a dual-wavelength digital holography system for plasma facing component erosion measurements on prototype material plasma exposure experiment. Such a system will allow in situ real-time measurements of component erosion. Initially the system will be developed with one laser, and first experimental laboratory measurements will be made with the single laser system. In the second year of development, a second CO2 laser will be added and measurements with the dual wavelength system will begin. Adding the second wavelength allows measurements at a much longer synthetic wavelength.

10.
Rev Sci Instrum ; 87(5): 053507, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27250423

RESUMEN

An instrument was developed using digital holographic reconstruction of the wavefront from a CO2 laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1-25 µs pulses from a continuous-wave CO2 laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfully reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations.

11.
Rev Sci Instrum ; 85(11): 11D630, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430206

RESUMEN

We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li(+) or Li(2 +), which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li(+) and 65 eV for the 135 Å Li(2 +) lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

12.
Rev Sci Instrum ; 85(11): 11D810, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430223

RESUMEN

In situ, real time measurement of net plasma-facing-component (PFC) erosion/deposition in a real plasma device is challenging due to the need for good spatial and temporal resolution, sufficient sensitivity, and immunity to fringe-jump errors. Design of a high-sensitivity, potentially high-speed, dual-wavelength CO2 laser digital holography system (nominally immune to fringe jumps) for PFC erosion measurement is discussed.

13.
Rev Sci Instrum ; 85(11): 11D835, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430248

RESUMEN

The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

14.
Rev Sci Instrum ; 85(11): 11E817, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430382

RESUMEN

The Lithium Tokamak eXperiment is a spherical tokamak with a close-fitting low-recycling wall composed of thin lithium layers evaporated onto a stainless steel-lined copper shell. Long-lived non-axisymmetric eddy currents are induced in the shell and vacuum vessel by transient plasma and coil currents and these eddy currents influence both the plasma and the magnetic diagnostic signals that are used as constraints for equilibrium reconstruction. A newly installed set of re-entrant magnetic diagnostics and internal saddle flux loops, compatible with high-temperatures and lithium environments, is discussed. Details of the axisymmetric (2D) and non-axisymmetric (3D) treatments of the eddy currents and the equilibrium reconstruction are presented.

15.
Rev Sci Instrum ; 83(10): 10D537, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126874

RESUMEN

There has been a long-standing collaboration between ORNL and PPPL on edge and boundary layer physics. As part of this collaboration, ORNL has a large role in the instrumentation and interpretation of edge physics in the lithium tokamak experiment (LTX). In particular, a charge exchange recombination spectroscopy (CHERS) diagnostic is being designed and undergoing staged testing on LTX. Here we present results of passively measured lithium emission at 5166.89 A in LTX in anticipation of active spectroscopy measurements, which will be enabled by the installation of a neutral beam in 2013. Preliminary measurements are made in transient LTX plasmas with plasma current, I(p) < 70 kA, ohmic heating power, P(oh) ∼ 0.3 MW and discharge lifetimes of 10-15 ms. Measurements are made with a short focal length spectrometer and optics similar to the CHERS diagnostics on NSTX [R. E. Bell, Rev. Sci. Instrum. 68(2), 1273-1280 (1997)]. These preliminary measurements suggest that even without the neutral beam for active spectroscopy, there is sufficient passive lithium emission to allow for line-of-sight profile measurements of ion temperature, T(i); toroidal velocity and v(t). Results show peak T(i) = 70 eV and peak v(t) = 45 km/s were reached 10 ms into the discharge.

16.
Rev Sci Instrum ; 81(10): 10D707, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21033900

RESUMEN

A method to measure the density distribution of a dense hydrogen gas jet is presented. A Mach 5.5 nozzle is cooled to 80 K to form a flow capable of molecular cluster formation. A 250 V, 10 mA electron beam collides with the jet and produces H(α) emission that is viewed by a fast camera. The high density of the jet, several 10(16) cm(-3), results in substantial electron depletion, which attenuates the H(α) emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

17.
Rev Sci Instrum ; 81(10): 10E114, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21033979

RESUMEN

The lithium tokamak experiment (LTX) is a modest-sized spherical tokamak (R(0)=0.4 m and a=0.26 m) designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 °C. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.

18.
Rev Sci Instrum ; 81(10): 10E527, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21034055

RESUMEN

The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to ∼40,000 fps at ∼64×4 pixels) with resolutions up to 640×512 pixels suitable for use with a CO(2) laser are readily available, if expensive.

19.
Rev Sci Instrum ; 79(10): 10E738, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044554

RESUMEN

The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multipoint Thomson scattering system. Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited "line-of-sight" access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

20.
Rev Sci Instrum ; 79(10): 10F116, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044600

RESUMEN

The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...