RESUMEN
Invasive wild pigs (Sus scrofa) are a reservoir for over 100 viral, bacterial, and parasitic pathogens that are transmissible to humans, livestock, domestic animals, and wildlife in North America. Numerous historical local surveys and results from a nation-wide survey (2006-2010) indicated that wild pigs in the United States act as reservoirs for Trichinella spp. and Toxoplasma gondii, two zoonotic pathogens of importance for human and animal health. Since that time, wild pig populations have expanded and increased in density in many areas. Population expansion of wild pigs creates opportunities for the introduction of pathogens to new areas of the country, increasing health risks. The goal of this study was to investigate the current geographic distribution and prevalence of Trichinella spp. and T. gondii antibodies in wild pigs using serum samples collected from 2014 to 2020. Serum samples from 36 states were tested for antibodies to Trichinella spp. (n = 7467) and T. gondii (n = 5984) using commercially available enzyme-linked immunosorbent assays. Seroprevalence for Trichinella spp. (12.4%, 927/7467) and T. gondii (40.8%, 2444/5984) are significantly higher compared to a previous 2006-2010 study across all regions. Results from this study also showed a lower seroprevalence (4.8%) for Trichinella spp. in the West region compared to the other regions (South: 13.4%; Midwest: 18.4%; Northeast: 19.1%). There were new detection records for antibodies to Trichinella spp. in 11 states, mostly in the West, Midwest, and Northeast regions compared to a previous study in 2014. Males and juveniles were less likely to be positive for Trichinella spp. antibodies, compared to females and older animals, respectively. Seroprevalence was similar for T. gondii across the regions (31.8-56%) with some states having particularly high seroprevalence (e.g., Hawaii 79.4% and Pennsylvania 68%). There were new T. gondii antibody detection records for 12 states, mostly in the West, Midwest, and Northeast regions. Adults were more likely than juveniles and subadults to be seropositive. These data confirm that the distribution and prevalence of antibodies for Trichinella spp. and T. gondii are increasing in the United States, likely driven by wild pig population growth and range expansion.
Asunto(s)
Enfermedades de los Porcinos , Toxoplasma , Toxoplasmosis Animal , Trichinella , Triquinelosis , Masculino , Femenino , Porcinos , Animales , Estados Unidos/epidemiología , Humanos , Triquinelosis/epidemiología , Triquinelosis/veterinaria , Prevalencia , Estudios Seroepidemiológicos , Anticuerpos Antiprotozoarios , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/parasitología , Toxoplasmosis Animal/parasitología , Anticuerpos Antihelmínticos , Pennsylvania , Sus scrofaRESUMEN
Interest in virtual reality (VR) for teaching and learning in higher education is growing, given its many potential applications. VR offers a socially interactive environment with novel ways to engage students with materials, objects, and activities and provide students with experiences such as "field trips" that would be otherwise very difficult. Preliminary work indicates overall positive gains in student learning across disciplines compared to other technology and traditional techniques, although more studies are needed to better our understanding of this tool. We employed an "immersive" VR (with a head-mounted display) in an online course which provided students with the opportunity to interact with peers and engage in activities. We asked about perceptions of the learning experience with the technology and how using VR impacts students' performance. We also noted the benefits and challenges of VR in an online course. Students perceived VR as a helpful component of the course, although performance on the cardiovascular unit assessment did not differ compared to the previous semester without VR. Supplementary Information: The online version contains supplementary material available at 10.1007/s41979-023-00095-9.
RESUMEN
Since the 1960s, scientists have observed the North American monarch butterfly (Danaus plexippus) continuing reproductive activities past the fall migration and into the winter months when the climate is mild. Recent work suggests that small populations of winter breeding monarchs are present in western and southeastern USA, as well as northwestern Mexico, with new winter breeding populations forming in areas where non-native milkweeds are planted. The year-round presence of milkweed plants and temperatures suitable for immature monarch development are vital factors allowing for winter breeding. Non-native milkweeds, in conjunction with novel barriers to migration, are likely contributing to the rise in winter breeding behavior. Warmer climates are already impacting milkweed phenology and range, possibly favoring winter breeding behavior. Similar pressures but different implications are expected for eastern and western winter breeding monarchs given the differences in the migration ecology, milkweed species, and climate changes in the two regions.
Asunto(s)
Asclepias , Mariposas Diurnas , Animales , Migración Animal , Fitomejoramiento , Ecología , América del NorteRESUMEN
BACKGROUND: Vector-borne infections pose significant health risks to humans, domestic animals, and wildlife. Domestic dogs (Canis lupus familiaris) in the United States may be infected with and serve as sentinel hosts for several zoonotic vector-borne pathogens. In this study, we analyzed the geographical distribution, risk factors, and co-infections associated with infection with Ehrlichia spp., Anaplasma spp., Borrelia burgdorferi, and Dirofilaria immitis in shelter dogs in the Eastern United States. METHODS: From 2016 to 2020, blood samples from 3750 shelter dogs from 19 states were examined with IDEXX SNAP® 4Dx® Plus tests to determine the seroprevalence of infection with tick-borne pathogens and infection with D. immitis. We assessed the impact of factors including age, sex, intact status, breed group, and location on infection using logistic regression. RESULTS: The overall seroprevalence of D. immitis was 11.2% (n = 419/3750), the seroprevalence of Anaplasma spp. was 2.4% (n = 90/3750), the seroprevalence of Ehrlichia spp. was 8.0% (n = 299/3750), and the seroprevalence of B. burgdorferi was 8.9% (n = 332/3750). Regional variation in seroprevalence was noted: D. immitis (17.4%, n = 355/2036) and Ehrlichia spp. (10.7%, n = 217/2036) were highest in the Southeast while seroprevalence for B. burgdorferi (19.3%, n = 143/740) and Anaplasma spp. (5.7%, n = 42/740) were highest in the Northeast. Overall, 4.8% (n = 179/3750) of dogs had co-infections, the most common of which were D. immitis/Ehrlichia spp. (1.6%, n = 59/3750), B. burgdorferi/Anaplasma spp. (1.5%, n = 55/3750), and B. burgdorferi/Ehrlichia spp. (1.2%, n = 46/3750). Risk factors significantly influenced infection across the evaluated pathogens were location and breed group. All evaluated risk factors were significant for the seroprevalence of D. immitis antigens. CONCLUSIONS: Our results demonstrate a regionally variable risk of infection with vector-borne pathogens in shelter dogs throughout the Eastern United States, likely due to varying distributions of vectors. However, as many vectors are undergoing range expansions or other changes in distribution associated with climate and landscape change, continued vector-borne pathogen surveillance is important for maintaining reliable risk assessment.
Asunto(s)
Anaplasmosis , Coinfección , Dirofilaria immitis , Dirofilariasis , Enfermedades de los Perros , Ehrlichiosis , Enfermedad de Lyme , Perros , Humanos , Animales , Estados Unidos/epidemiología , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/veterinaria , Anaplasmosis/epidemiología , Ehrlichiosis/epidemiología , Ehrlichiosis/veterinaria , Dirofilariasis/epidemiología , Estudios Seroepidemiológicos , Coinfección/epidemiología , Coinfección/veterinaria , Enfermedades de los Perros/epidemiología , Anticuerpos Antibacterianos , Anticuerpos Antihelmínticos , Ehrlichia , Anaplasma , Medición de RiesgoRESUMEN
Host density is an important factor when it comes to parasite transmission and host resistance. Increased host density can increase contact rate between individuals and thus parasite transmission. Host density can also cause physiological changes in the host, which can affect host resistance. Yet, the direction in which host density affects host resistance remains unresolved. It is also unclear whether food limitation plays a role in this effect. We investigated the effect of larval density in monarch butterflies, Danaus plexippus, on the resistance to their natural protozoan parasite Ophryocystis elektroscirrha under both unlimited and limited food conditions. We exposed monarchs to various density treatments as larvae to mimic high densities observed in sedentary populations. Data on infection and parasite spore load were collected as well as development time, survival, wing size, and melanization. Disease susceptibility under either food condition or across density treatments was similar. However, we found high larval density impacted development time, adult survival, and wing morphology when food was limited. This study aids our understanding of the dynamics of environmental parasite transmission in monarch populations, which can help explain the increased prevalence of parasites in sedentary monarch populations compared to migratory populations.
RESUMEN
Insect-pathogen dynamics can show seasonal and inter-annual variations that covary with fluctuations in insect abundance and climate. Long-term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence. Monarch butterflies Danaus plexippus are commonly infected with the protozoan Ophryocystis elektroscirrha (OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection. Here we compiled data on OE infection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration. Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid-2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result of OE, highlighting the need to consider the parasite as a potential threat to the monarch population. Increases in infection among eastern North American monarchs post-2002 suggest that changes to the host's ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.
Asunto(s)
Mariposas Diurnas , Parásitos , Migración Animal , Animales , Mariposas Diurnas/parasitología , México , Fitomejoramiento , Estaciones del Año , Estados UnidosRESUMEN
Dracunculus medinensis (Guinea worm [GW]), a zoonotic nematode targeted for eradication, has been managed using interventions aimed at humans; however, increases in domestic dog GW infections highlight the need for novel approaches. We conducted two clinical trials evaluating the efficacy of subcutaneously injected flubendazole (FBZ) as a treatment of GW infection. The first trial was conducted administering FBZ to experimentally infected ferrets; the second trial involved administering FBZ or a placebo to domestic dogs in the Republic of Tchad (Chad). We found contrasting results between the two trials. When adult gravid female GW were recovered from ferrets treated with FBZ, larvae presented in poor condition, with low to no motility, and an inability to infect copepods. Histopathology results indicated a disruption to morulae development within uteri of worms from treated animals. Results from the trial in Chadian dogs failed to indicate significant treatment of or prevention against GW infection. However, the difference in treatment intervals (1 month for ferrets and 6 months for dogs) or the timing of treatment (ferrets were treated later in the GW life-cycle than dogs) could explain different responses to the subcutaneous FBZ injections. Both trials provided valuable data guiding the use of FBZ in future trials (such as decreasing treatment intervals or increasing the dose of FBZ in dogs to increase exposure), and highlighted important lessons learned during the implementation of a field-based, double-blinded randomized control trial in Chadian dogs.
RESUMEN
Monarch butterflies (Danaus plexippus) (Lepidoptera Danaidae Danaus plexippus (Linnaeus)) are an iconic species of conservation concern due to declines in the overwintering colonies over the past twenty years. Because of this downward trend in overwintering numbers in both California and Mexico, monarchs are currently considered 'warranted-but-precluded' for listing under the Endangered Species Act. Monarchs have a fascinating life history and have become a model system in chemical ecology, migration biology, and host-parasite interactions, but many aspects of monarch biology important for informing conservation practices remain unresolved. In this review, we focus on recent advances using experimental and genetic approaches that inform monarch conservation. In particular, we emphasize three areas of broad importance, which could have an immediate impact on monarch conservation efforts: 1) breeding habitat and host plant use, 2) natural enemies and exotic caterpillar food plants, and 3) the utility of genetic and genomic approaches for understanding monarch biology and informing ongoing conservation efforts. We also suggest future studies in these areas that could improve our understanding of monarch behavior and conservation.
RESUMEN
Helminths are parasites that cause disease at considerable cost to public health and present a risk for emergence as novel human infections. Although recent research has elucidated characteristics conferring a propensity to emergence in other parasite groups (e.g. viruses), the understanding of factors associated with zoonotic potential in helminths remains poor. We applied an investigator-directed learning algorithm to a global dataset of mammal helminth traits to identify factors contributing to spillover of helminths from wild animal hosts into humans. We characterized parasite traits that distinguish between zoonotic and non-zoonotic species with 91% accuracy. Results suggest that helminth traits relating to transmission (e.g. definitive and intermediate hosts) and geography (e.g. distribution) are more important to discriminating zoonotic from non-zoonotic species than morphological or epidemiological traits. Whether or not a helminth causes infection in companion animals (cats and dogs) is the most important predictor of propensity to cause human infection. Finally, we identified helminth species with high modelled propensity to cause zoonosis (over 70%) that have not previously been considered to be of risk. This work highlights the importance of prioritizing studies on the transmission of helminths that infect pets and points to the risks incurred by close associations with these animals. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Asunto(s)
Enfermedades de los Gatos/transmisión , Enfermedades de los Perros/transmisión , Helmintos/fisiología , Interacciones Huésped-Parásitos , Zoonosis/transmisión , Animales , Enfermedades de los Gatos/parasitología , Gatos , Enfermedades de los Perros/parasitología , Perros , Modelos Biológicos , Zoonosis/parasitologíaRESUMEN
Parasitic nematodes in the genus Dracunculus have a complex life cycle that requires more than one host species in both aquatic and terrestrial habitats. The most well-studied species, Dracunculus medinensis, is the causative agent of human Guinea worm disease (dracunculiasis). There are several other Dracunculus species that infect non-human animals, primarily wildlife (reptiles and mammals). The classic route of D. medinensis transmission to humans is through the ingestion of water containing the intermediate host, a cyclopoid copepod, infected with third-stage larvae (L3s). However, many animal hosts (e.g., terrestrial snakes, dogs) of other Dracunculus sp. appear unlikely to ingest a large number of copepods while drinking. Therefore, alternative routes of infection (e.g., paratenic or transport hosts) may facilitate Dracunculus transmission to these species. To better understand the role of paratenic and transport hosts in Dracunculus transmission to animal definitive hosts, we compared copepod ingestion rates for aquatic species (fish, frogs [tadpoles and adults], and newts) which may serve as paratenic or transport hosts. We hypothesized that fish would consume more copepods than amphibians. Our findings confirm that African clawed frogs (Xenopus laevis) and fish consume copepods, but that fish ingest, on average, significantly higher numbers (68% [34/50]) than adult African clawed frogs (36% [18/50]) during a 24-h time period. Our results suggest that amphibians and fish may play a role in the transmission of Dracunculus to definitive hosts. Still, additional research is required to determine whether, in the wild, fish or frogs are serving as paratenic or transport hosts. If so, they may facilitate Dracunculus transmission. However, if these animals simply act as dead-end hosts or as means of copepod population control, they may decrease Dracunculus transmission.
RESUMEN
Online college courses can lack much-needed student interactions without live synchronous sessions. The need for socialization is particularly important for first-year students and has been of particular concern during the COVID-19 pandemic, when isolation is the new norm outside the classroom. Here we provide a perspective on the use of online synchronous sessions in a first-year biology course that encouraged student-student interactions and employed the culturally responsive teaching approach. We used group assignments, modeled on the jigsaw method, during our meetings and provided extra time outside of the dedicated class period to foster student collaboration, conversation, and social presence. We noted high attendance and participation in the synchronous sessions, suggesting effectiveness of the methods we used in student engagement and satisfaction.
RESUMEN
INTRODUCTION: The global Guinea Worm Eradication Program has reduced numbers of human infections of Guinea worm disease (dracunculiasis) to 49 cases in four countries. However, infections of domestic animals (dogs and cats) have recently been recognized and are increasing. Typically, Guinea worm (Dracunculus medinensis) transmission occurs via the ingestion of copepods from water. Despite several interventions, including tethering of dogs while worms emerge, the number of infected dogs continue to increase. One hypothesis is that dogs could be infected through the ingestion of copepods in provisioned water. OBJECTIVES: The purpose of this study was to determine whether copepods can survive in water containers under typical Chadian temperatures. METHODS: Four container types (plastic, glass, gourd, and metal) were seeded with copepods and exposed to simulated Chadian temperatures. RESULTS: All copepods in the metal containers died within 4 h. Conversely, after 8 h live copepods were still present in plastic, glass, and gourd containers. CONCLUSIONS: If provisioned water is provided to potential hosts of D. medinensis, metal containers create the most inhospitable environment for copepods. Plastic containers have little effect on copepod mortality. The use of metal containers for water provisions could be a useful tool assisting with the interruption of D. medinensis transmission among dogs.
Asunto(s)
Copépodos/parasitología , Enfermedades de los Perros/transmisión , Dracunculiasis/veterinaria , Animales , Chad , Enfermedades de los Perros/parasitología , Perros , Dracunculiasis/transmisión , Dracunculus , Control de Infecciones , AguaRESUMEN
Dracunculus medinensis, the causative agent of Guinea worm disease in humans, is being reported with increasing frequency in dogs. However, the route(s) of transmission to dogs is still poorly understood. Classical transmission to humans occurs via drinking water that contains cyclopoid copepods infected with third stage larvae of D. medinensis, but due to the method of dog drinking (lapping) compared to humans (suction and/or retrieval of water into containers), it seems unlikely that dogs would ingest copepods readily through drinking. We exposed lab raised beagles to varying densities of uninfected copepods in 2 liters of water to evaluate the number of copepods ingested during a drinking event. We confirmed dogs can ingest copepod intermediate hosts while drinking; however, low numbers were ingested at the densities that are typically observed in Chad suggesting this transmission route may be unlikely. Overall, the relative importance of the classic transmission route and alternate transmission routes, such as paratenic and transport hosts, needs investigation in order to further clarify the epidemiology of guinea worm infections in dogs.
Asunto(s)
Perros , Dracunculiasis/transmisión , Dracunculus/fisiología , Animales , Chad/epidemiología , Control de Enfermedades Transmisibles , Copépodos , Vectores de Enfermedades , Dracunculiasis/epidemiología , Ingestión de Alimentos , Femenino , Humanos , MasculinoRESUMEN
Global insect pollinator declines have prompted habitat restoration efforts, including pollinator-friendly gardening. Gardens can provide nectar and pollen for adult insects and offer reproductive resources, such as nesting sites and caterpillar host plants. We conducted a review and meta-analysis to examine how decisions made by gardeners on plant selection and garden maintenance influence pollinator survival, abundance, and diversity. We also considered characteristics of surrounding landscapes and the impacts of pollinator natural enemies. Our results indicated that pollinators responded positively to high plant species diversity, woody vegetation, garden size, and sun exposure and negatively to the separation of garden habitats from natural sites. Within-garden features more strongly influenced pollinators than surrounding landscape factors. Growing interest in gardening for pollinators highlights the need to better understand how gardens contribute to pollinator conservation and how some garden characteristics can enhance the attractiveness and usefulness of gardens to pollinators. Further studies examining pollinator reproduction, resource acquisition, and natural enemies in gardens and comparing gardens with other restoration efforts and to natural habitats are needed to increase the value of human-made habitats for pollinators.
Siembra jardines para dar soporte a los insectos polinizadores Resumen La declinación mundial de insectos polinizadores ha dado pie a esfuerzos de restauración, incluyendo la jardinería amigable con los polinizadores. Los jardines pueden proporcionar néctar y polen para los insectos adultos y también pueden ofrecer recursos reproductivos, como sitios de anidación y plantas hospederas para las orugas. Realizamos una revisión y un meta-análisis para examinar cómo las decisiones que toman los jardineros relacionadas a la selección de plantas y el mantenimiento del jardín influyen se la supervivencia, abundancia y diversidad de los polinizadores. También consideramos las características de los paisajes vecinos y los impactos de los enemigos naturales de los polinizadores. Nuestros resultados indicaron que los polinizadores respondieron positivamente a la alta diversidad de especies de plantas, la vegetación leñosa, el tamaño del jardín y la exposición al sol, mientras que respondieron negativamente a la separación entre los jardines y los sitios naturales. Las características intrínsecas de los jardines tuvieron una mayor influencia sobre los polinizadores que los factores del paisaje vecino. El creciente interés por la jardinería para polinizadores resalta la necesidad de entender como los jardines contribuyen a la conservación y como algunas características de los jardines pueden incrementar lo útil y atractivo de los jardines para los polinizadores. Se requieren estudios más profundos que examinen la reproducción de los polinizadores, la adquisición de recursos y los enemigos naturales en los jardines, y también que comparen a los jardines con otros esfuerzos de restauración y con los hábitats naturales para incrementar el valor de los hábitats para polinizadores creados por humanos.
Asunto(s)
Jardinería , Jardines , Animales , Conservación de los Recursos Naturales , Ecosistema , Humanos , Insectos , PolinizaciónRESUMEN
Understanding factors that allow highly virulent parasites to reach high infection prevalence in host populations is important for managing infection risks to human and wildlife health. Multiple transmission routes have been proposed as one mechanism by which virulent pathogens can achieve high prevalence, underscoring the need to investigate this hypothesis through an integrated modelling-empirical framework. Here, we examine a harmful specialist protozoan infecting monarch butterflies that commonly reaches high prevalence (50-100%) in resident populations. We integrate field and modelling work to show that a combination of three empirically-supported transmission routes (vertical, adult transfer and environmental transmission) can produce and sustain high infection prevalence in this system. Although horizontal transmission is necessary for parasite invasion, most new infections post-establishment arise from vertical transmission. Our study predicts that multiple transmission routes, coupled with high parasite virulence, can reduce resident host abundance by up to 50%, suggesting that the protozoan could contribute to declines of North American monarchs.
Asunto(s)
Mariposas Diurnas/parasitología , Animales , Interacciones Huésped-Parásitos , Prevalencia , VirulenciaRESUMEN
BACKGROUND: North American monarchs (Danaus plexippus) are well-known for their long-distance migrations; however, some monarchs within the migratory range have adopted a resident lifestyle and breed year-round at sites where tropical milkweed (Asclepias curassavica) is planted in the southern coastal United States. An important question is whether exposure to exotic milkweed alters monarch migratory physiology, particularly the ability to enter and remain in the hormonally-induced state of reproductive diapause, whereby adults delay reproductive maturity. Cued by cooler temperatures and shorter photoperiods, diapause is a component of the monarch's migratory syndrome that includes directional flight behavior, lipid accumulation, and the exceptional longevity of the migratory generation. METHODS: Here, we experimentally test how exposure to tropical milkweed during the larval and adult stages influences monarch reproductive status during fall migration. Caterpillars reared under fall-like conditions were fed tropical versus native milkweed diets, and wild adult migrants were placed in outdoor flight cages with tropical milkweed, native milkweed, or no milkweed. RESULTS: We found that monarchs exposed to tropical milkweed as larvae were more likely to be reproductively active (exhibit mating behavior in males and develop mature eggs in females) compared to monarchs exposed to native milkweed. Among wild-caught fall migrants, females exposed to tropical milkweed showed greater egg development than females exposed to native or no milkweed, although a similar response was not observed for males. CONCLUSIONS: Our study provides evidence that exposure to tropical milkweed can increase monarch reproductive activity, which could promote continued residency at year-round breeding sites and decrease monarch migratory propensity.
RESUMEN
Body condition metrics are widely used to infer animal health and to assess costs of parasite infection. Since parasites harm their hosts, ecologists might expect negative relationships between infection and condition in wildlife, but this assumption is challenged by studies showing positive or null condition-infection relationships. Here, we outline common condition metrics used by ecologists in studies of parasitism, and consider mechanisms that cause negative, positive, and null condition-infection relationships in wildlife systems. We then perform a meta-analysis of 553 condition-infection relationships from 187 peer-reviewed studies of animal hosts, analysing observational and experimental records separately, and noting whether authors measured binary infection status or intensity. Our analysis finds substantial heterogeneity in the strength and direction of condition-infection relationships, a small, negative average effect size that is stronger in experimental studies, and evidence for publication bias towards negative relationships. The strongest predictors of variation in study outcomes are host thermoregulation and the methods used to evaluate body condition. We recommend that studies aiming to assess parasite impacts on body condition should consider host-parasite biology, choose condition measures that can change during the course of infection, and employ longitudinal surveys or manipulate infection status when feasible.