RESUMEN
Root-based uptake of inorganic carbon has been suggested as an additional carbon source. Our study aimed to characterize and understand the root-based uptake and fixation mechanisms and their impact on plant growth. 13C-labeled bicarbonate fed to Arabidopsis roots was assimilated into aspartic acid but mainly into sucrose, indicating that the added inorganic carbon was transported to the leaves. A hydroponic treatment was also established for A. thaliana using 2 mM NaHCO3 at pH 5.6, which enhanced the photosynthetic and growth parameters. According to transcriptome sequencing data, the observed enhancement in growth may be orchestrated by trehalose-6-phosphate signaling and supported by augmented nitrogen and sulfur assimilation. The analysis also revealed regulatory and transporter activities, including several nitrate (NRT2.1), and sulfate transporter (SULTR1;1 and SULTR1;2) candidates that could participate in bicarbonate uptake. Different transporters and carbon fixation mutants were assessed. Arabidopsis homologs of SLOW-TYPE ANION CHANNEL 1 (slah3) CARBONIC ANHYDRASE (ßca4), and SULFATE TRANSPORTER (sultr1;2) mutants were shown to be inferior to the bicarbonate-treated wild types in several growth and root ultrastructural parameters. Besides, aquaporin genes PIP1;3 and PIP2;6 could play a negative role in the carbon uptake by venting carbon dioxide out of the plant. The findings support the hypothesis that the inorganic carbon is taken up by the root anion channels, mostly transported up to the shoots by the xylem, and fixed there by RuBisCo after the conversion to CO2 by carbonic anhydrases. The process boosts photosynthesis and growth by providing an extra carbon supply.
RESUMEN
The main aim of this work was to better understand how the low temperature signal from the leaves may affect the stress responses in the roots, and how the light conditions modify certain stress acclimation processes in rice plants. Rice plants grown at 27°C were exposed to low temperatures (12°C) with different light intensities, and in the case of some groups of plants, only the leaves received the cold, while the roots remained at control temperature. RNA sequencing focusing on the roots of plants grown under normal growth light conditions found 525 differentially expressed genes in different comparisons. Exposure to low temperature led to more down-regulated than up-regulated genes. Comparison between roots of the leaf-stressed plants and whole cold-treated or control plants revealed that nitrogen metabolism and nitric oxide-related signalling, as well as the phenylpropanoid-related processes, were specifically affected. Real-time PCR results focusing on the COLD1 and polyamine oxidase genes, as well as metabolomics targeting hormonal changes and phenolic compounds also showed that not only cold exposure of the leaves, either alone or together with the roots, but also the light conditions may influence certain stress responses in the roots of rice plants.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Luz , Oryza , Raíces de Plantas , Brotes de la Planta , Transducción de Señal , Estrés Fisiológico , Oryza/genética , Oryza/efectos de la radiación , Oryza/fisiología , Oryza/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de la radiación , Raíces de Plantas/fisiología , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Transducción de Señal/efectos de la radiación , Estrés Fisiológico/genética , Brotes de la Planta/efectos de la radiación , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Brotes de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Frío , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Polyamines play an important role in growth and differentiation by regulating numerous physiological and biochemical processes at the cellular level. In addition to their roborative effect, their essential role in plant stress responses has been also reported. However, the positive effect may depend on the fine-tuning of polyamine metabolism, which influences the production of free radicals and/or signalling molecules. In the present study, 0.3 mM hydroponic putrescine treatment was tested in wheat, maize, and rice in order to reveal differences in their answers and highlight the relation of these with polyamine metabolism. In the case of wheat, the chlorophyll content and the actual quantum yield increased after putrescine treatment, and no remarkable changes were detected in the stress markers, polyamine contents, or polyamine metabolism-related gene expression. Although, in maize, the actual quantum yield decreased, and the root hydrogen peroxide content increased, no other negative effect was observed after putrescine treatment due to activation of polyamine oxidases at enzyme and gene expression levels. The results also demonstrated that after putrescine treatment, rice with a higher initial polyamine content, the balance of polyamine metabolism was disrupted and a significant amount of putrescine was accumulated, accompanied by a detrimental decrease in the level of higher polyamines. These initial differences and the putrescine-induced shift in polyamine metabolism together with the terminal catabolism or back-conversion-induced release of a substantial quantity of hydrogen peroxide could contribute to oxidative stress observed in rice.
RESUMEN
The aim of the study was to reveal the influence of phyA mutations on polyamine metabolism in Arabidopsis under different spectral compositions. Polyamine metabolism was also provoked with exogenous spermine. The polyamine metabolism-related gene expression of the wild type and phyA plants responded similarly under white and far-red light conditions but not at blue light. Blue light influences rather the synthesis side, while far red had more pronounced effects on the catabolism and back-conversion of the polyamines. The observed changes under elevated far-red light were less dependent on PhyA than the blue light responses. The polyamine contents were similar under all light conditions in the two genotypes without spermine application, suggesting that a stable polyamine pool is important for normal plant growth conditions even under different spectral conditions. However, after spermine treatment, the blue regime had more similar effects on synthesis/catabolism and back-conversion to the white light than the far-red light conditions. The additive effects of differences observed on the synthesis, back-conversion and catabolism side of metabolism may be responsible for the similar putrescine content pattern under all light conditions, even in the presence of an excess of spermine. Our results demonstrated that both light spectrum and phyA mutation influence polyamine metabolism.
RESUMEN
Although light-emitting diode (LED) technology has extended the research on targeted photomorphogenic, physiological, and biochemical responses in plants, there is not enough direct information about how light affects polyamine metabolism. In this study, the effect of three spectral compositions (referred to by their most typical characteristic: blue, red, and the combination of blue and red [pink] lights) on polyamine metabolism was compared to those obtained under white light conditions at the same light intensity. Although light quality induced pronounced differences in plant morphology, pigment contents, and the expression of polyamine metabolism-related genes, endogenous polyamine levels did not differ substantially. When exogenous polyamines were applied, their roborative effect were detected under all light conditions, but these beneficial changes were correlated with an increase in polyamine content and polyamine metabolism-related gene expression only under blue light. The effect of the polyamines on leaf gene expression under red light was the opposite, with a decreasing tendency. Results suggest that light quality may optimize plant growth through the adjustment of polyamine metabolism at the gene expression level. Polyamine treatments induced different strategies in fine-tuning of polyamine metabolism, which were induced for optimal plant growth and development under different spectral compositions.
Asunto(s)
Poliaminas , Triticum , Hojas de la Planta/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Triticum/metabolismoRESUMEN
Maize is sensitive to cold injury, especially during germination. Since cold causes oxidative stress, compounds that promote the accumulation of free radical forms, such as the reactive aldehyde (RA) methylglyoxal (MG), may be suitable to trigger a systemic defense response. In this study, maize seeds were soaked in MG solution for one night at room temperature, before germination test at 13°C. The exogenous MG enhanced the germination and photosynthetic performance of maize at low temperature. Transcriptome analysis, hormonal, and flavonoid profiling indicated MG-induced changes in photosystem antenna proteins, pigments, late embryogenesis abundant proteins, abscisic acid (ABA) derivatives, chaperons, and certain dihydroflavonols, members of the phenylpropanoid pathway. MG-response of the two maize cultivars (A654 and Cm174) were somewhat different, but we recorded higher endogenous hydrogen peroxide (H2 O2 ) and lower nitric oxide (NO) level in at least one of the treated genotypes. These secondary signal molecules may provoke some of the changes in the hormonal, metabolic and gene expression profile. Decreased auxin transport, but increased ABA degradation and cytokinin and jasmonic acid (JA) synthesis, as well as an altered carbohydrate metabolism and transport (amylases, invertases, and SWEET transporters) could have promoted germination of MG-pretreated seeds. While LEA accumulation could have protected against osmotic stress and catalase expression and production of many antioxidants, like para-hydroxybenzoic acid (p-HBA) and anthocyanins may have balanced the oxidative environment for maize germination. Our results showed that MG-pretreatment could be an effective way to promote cold germination and its effect was more pronounced in the originally cold-sensitive maize genotype.
Asunto(s)
Germinación , Zea mays , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Piruvaldehído/metabolismo , Piruvaldehído/farmacología , Semillas/genética , Temperatura , Zea mays/metabolismoRESUMEN
Although the relationship between polyamines and photosynthesis has been investigated at several levels, the main aim of this experiment was to test light-intensity-dependent influence of polyamine metabolism with or without exogenous polyamines. First, the effect of the duration of the daily illumination, then the effects of different light intensities (50, 250, and 500 µmol m-2 s-1) on the polyamine metabolism at metabolite and gene expression levels were investigated. In the second experiment, polyamine treatments, namely putrescine, spermidine and spermine, were also applied. The different light quantities induced different changes in the polyamine metabolism. In the leaves, light distinctly induced the putrescine level and reduced the 1,3-diaminopropane content. Leaves and roots responded differently to the polyamine treatments. Polyamines improved photosynthesis under lower light conditions. Exogenous polyamine treatments influenced the polyamine metabolism differently under individual light regimes. The fine-tuning of the synthesis, back-conversion and terminal catabolism could be responsible for the observed different polyamine metabolism-modulating strategies, leading to successful adaptation to different light conditions.
Asunto(s)
Poliaminas/metabolismo , Triticum/metabolismo , Luz , Fotosíntesis , Hojas de la Planta/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismoRESUMEN
The exposure of plants to non-lethal low temperatures may increase their tolerance to a subsequent severe chilling stress. To some extent, this is also true for cold-sensitive species, including maize. In the present work, based on our previous microarray experiment, the differentially expressed genes with phenylpropanoid pathways in the focus were further investigated in relation to changes in certain phenolic compounds and other plant growth regulators. Phenylalanine ammonia lyase (PAL) was mainly activated under limited light conditions. However, light-induced anthocyanin accumulation occurred both in the leaves and roots. Chilling stress induced the accumulation of salicylic acid (SA), but this accumulation was moderated in the cold-acclimated plants. Acclimation also reduced the accumulation of jasmonic acid (JA) in the leaves, which was rather induced in the roots. The level of abscisic acid (ABA) is mainly related to the level of the stress, and less indicated the level of the acclimation. The highest glutathione (GSH) amount was observed during the recovery period in the leaves of plants that were cold acclimated at growth light, while their precursors started to accumulate GSH even during the chilling. In conclusion, different light conditions during the cold acclimation period differentially affected certain stress-related mechanisms in young maize plants and changes were also light-dependent in the root, not only in the leaves.
Asunto(s)
Aclimatación/fisiología , Ácido Salicílico/metabolismo , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Frío , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Oxilipinas/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismoRESUMEN
Cold-acclimation is essential for the development of adequate frost-hardiness in cereals and therefore sudden freezes can cause considerable damage to the canopy. However, timely adding of an appropriate signal in the absence of cold acclimation may also harden wheat for the upcoming freeze. The feasibility of the promising signal molecule methylglyoxal was tested here for such applications and the signal mechanism was studied in bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. ssp. durum). Spraying with 10 mM methylglyoxal did not decrease the fresh weight and photosynthetic parameters in most wheat varieties at growth temperature (21 °C). Photosynthetic parameters even improved and chlorophyll content increased in some cases. Increased transcript level of glutathione-S-transferases and omega-3 fatty acid desaturases was detected by qPCR 6 h after the last methylglyoxal spray. Aldo-keto reductase and glyoxalase enzyme activities, as well as sorbitol content of wheat plants increased 24 h after the last 10 mM methylglyoxal spray in most of the cultivars. These mechanisms may explain the increased freezing survival of methylglyoxal pretreated wheat plants from less than 10% to over 30%. Our results demonstrate that exogenous methylglyoxal treatment can be safely added to wheat plants as preparatory treatment without detrimental effects but inducing some of the stress-protective mechanisms, which contribute to frost-hardiness.
Asunto(s)
Aldehídos , Congelación , Piruvaldehído , Triticum , Adaptación Fisiológica/efectos de los fármacos , Aldehídos/metabolismo , Fotosíntesis , Piruvaldehído/farmacología , Triticum/efectos de los fármacosRESUMEN
Salicylic acid (SA) plays a role in several physiological processes in plants. Exogenously applied SA is a promising tool to reduce stress sensitivity. However, the mode of action may depend on how the treatment was performed and environmental conditions may alter the effects of SA. In the present study the physiological and biochemical effects of different modes of application (soaking seeds prior sowing; spraying leaves with 0.5 mM NaSA) were compared at normal and moderately elevated temperatures (4 h; 35°C) in Brachypodium distachyon (L.) P. Beauv. plants. While soaking the seeds stimulated plant growth, spraying caused mild stress, as indicated by the chlorophyll-a fluorescence induction parameters and changes in certain protective compounds, such as glutathione, flavonoids or antioxidant enzymes. Elevated temperature also caused an increase in the glutathione-S-transferase activity, and this increase was more pronounced in plants pre-treated with NaSA. Both seed soaking or spraying with NaSA and exposure to heat treatment at 35°C reduced the abscisic acid levels in the leaves. In contrast to abscisic acid, the jasmonic acid level in the leaves were increased by both spraying and heat treatment. The present results suggest that different modes of application may induce different physiological processes, after which plants respond differently to heat treatment. Since these results were obtained with a model plants, further experiments are required to clarify how these changes occur in crop plants, especially in cereals.
Asunto(s)
Brachypodium/efectos de los fármacos , Brachypodium/metabolismo , Calor , Salicilato de Sodio/administración & dosificación , Estrés Fisiológico , Brachypodium/crecimiento & desarrollo , Clorofila A/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacosRESUMEN
Polyamines are multifaceted compounds which play a role in regulating plant growth and stress tolerance in interactions with plant hormones. The aim of the present study was to reveal how exogenous polyamines influence the synthesis of salicylic acid, with a special emphasis on the effect of salicylic acid deficiency on the polyamine metabolism and polyamine-induced changes in other plant hormone contents. Our hypothesis was that the individual polyamines induced different changes in the polyamine and salicylic acid metabolism of the wild type and salicylic acid-deficient Arabidopsis mutants, which in turn influenced other hormones. To our knowledge, such a side-by-side comparison of the influence of eds5-1 and sid2-2 mutations on polyamines has not been reported yet. To achieve our goals, wild and mutant genotypes were tested after putrescine, spermidine or spermine treatments. Polyamine and plant hormone metabolism was investigated at metabolite and gene expression levels. Individual polyamines induced different changes in the Arabidopsis plants, and the responses were also genotype-dependent. Polyamines upregulated the polyamine synthesis and catabolism, and remarkable changes in hormone synthesis were found especially after spermidine or spermine treatments. The sid2-2 mutant showed pronounced differences compared to Col-0. Interactions between plant hormones may also be responsible for the observed differences.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Poliaminas/farmacología , Arabidopsis/genética , Transferasas Intramoleculares/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mutación/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Salicílico/metabolismoRESUMEN
Exposure of plants to low temperature in the light may induce photoinhibitory stress symptoms, including oxidative damage. However, it is also known that light is a critical factor for the development of frost hardiness in cold tolerant plants. In the present work the effects of light during the cold acclimation period were studied in chilling-sensitive maize plants. Before exposure to chilling temperature at 5°C, plants were cold acclimated at non-lethal temperature (15°C) under different light conditions. Although exposure to relatively high light intensities during cold acclimation caused various stress symptoms, it also enhanced the effectiveness of acclimation processes to a subsequent severe cold stress. It seems that the photoinhibition induced by low temperature is a necessary evil for cold acclimation processes in plants. Greater accumulations of soluble sugars were also detected during hardening at relatively high light intensity. Certain stress responses were light-dependent not only in the leaves, but also in the roots. The comparison of the gene expression profiles based on a microarray study demonstrated that the light intensity is at least as important a factor as the temperature during the cold acclimation period. Differentially expressed genes were mainly involved in most of assimilation and metabolic pathways, namely photosynthetic light capture via the modification of chlorophyll biosynthesis and the dark reactions, carboxylic acid metabolism, cellular amino acid, porphyrin or glutathione metabolic processes, ribosome biogenesis and translation. Results revealed complex regulation mechanisms and interactions between cold and light signalling processes.
RESUMEN
Polyamine metabolism is in relation with several metabolic pathways and linked with plant hormones or signalling molecules; in addition polyamines may modulate the up- or down-regulation of gene expression. However the precise mechanism by which polyamines act at the transcription level is still unclear. In the present study the modifying effect of putrescine pre-treatment has been investigated using the microarray transcriptome profile analysis under the conditions where exogenous putrescine alleviated osmotic stress in wheat plants. Pre-treatment with putrescine induced the unique expression of various general stress-related genes. Although there were obvious differences between the effects of putrescine and polyethylene glycol treatments, there was also a remarkable overlap between the effects of putrescine and osmotic stress responses in wheat plants, suggesting that putrescine has already induced acclimation processes under control conditions. The fatty acid composition in certain lipid fractions and the antioxidant enzyme activities have also been specifically changed under osmotic stress conditions or after treatment with putrescine.
Asunto(s)
Presión Osmótica/efectos de los fármacos , Putrescina/farmacología , Triticum/fisiología , Antioxidantes/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Genes de Plantas , Peroxidasa/metabolismo , Polietilenglicoles/farmacología , Análisis de Componente Principal , Triticum/efectos de los fármacos , Triticum/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genéticaRESUMEN
In several cases a correlation was found between polyamines and abiotic stress tolerance. However, the individual polyamines may have different effects, which also vary depending on the type of treatment. When applied as seed soaking or added hydroponically 0.5mM putrescine and spermidine, different changes were induced during 50µM cadmium stress in wheat plants. Seed-soaked plants were exposed to cadmium immediately after germination for 5 days, while plants pre-treated with polyamines hydroponically were stressed at age of 14 days for 7 days. Putrescine pre-treatment was beneficial both as seed soaking and applied hydroponically, while spermidine only had a protective effect in the case of seed soaking, enhancing the Cd-induced oxidative stress when were pre-treated hydroponically. The differences observed were related to the polyamine metabolism. The accumulation of endogenous putrescine beyond a certain amount may be in relation with the negative effect of hydroponic spermidine pre-treatment during Cd stress. The increased putrescine content was also correlated with the highest accumulation of Cd, salicylic acid and proline contents in plants treated with a combination of spermidine and Cd. However, the expression level of the gene encoding phytochelatin synthase was only influenced by hydroponically applied spermidine, which decreased it under cadmium stress. Changes in the activities of antioxidant enzymes, diamine and polyamine oxidases were also discussed.
Asunto(s)
Cadmio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Putrescina/farmacología , Contaminantes del Suelo/toxicidad , Espermidina/farmacología , Triticum/efectos de los fármacos , Antioxidantes/metabolismo , Cadmio/metabolismo , Prolina/metabolismo , Putrescina/metabolismo , Ácido Salicílico/metabolismo , Semillas/efectos de los fármacos , Semillas/metabolismo , Contaminantes del Suelo/metabolismo , Espermidina/metabolismo , Triticum/metabolismoRESUMEN
Salinity-induced osmotic, ionic and oxidative stress responses were investigated on Asakaze/Manas wheat/barley addition lines 7H, 7HL and 7HS, together with their barley (salt-tolerant) and wheat (relatively salt-sensitive) parents. Growth, photosynthetic activity, chlorophyll degradation, proline, glycine betaine accumulation, sugar metabolism, Na+ and K+ uptake and transport processes and the role of polyamines and antioxidants were studied in young plants grown in hydroponic culture with or without salt treatment. Changes in plant growth and photosynthetic activity of plants demonstrated that the salt tolerance of the addition lines 7H and 7HL was similar to that of barley parent cv. Manas, while the sensitivity of the addition line 7HS was similar to that of the wheat parent cv. Asakaze. The Na accumulation in the roots and shoots did not differ between the addition lines and wheat parent. The activation of various genes related to Na uptake and transport was not correlated with the salt tolerance of the genotypes. These results indicated that the direct regulation of Na transport processes is not the main reason for the salt tolerance of these genotypes. Salt treatment induced a complex metabolic rearrangement in both the roots and shoots of all the genotypes. Elevated proline accumulation in the roots and enhanced sugar metabolism in the shoots were found to be important for salt tolerance in the 7H and 7HL addition lines and in barley cv. Manas. In wheat cv. Asakaze and the 7HS addition line the polyamine metabolism was activated. It seems that osmotic adjustment is a more important process in the improvement of salt tolerance in 7H addition lines than the direct regulation of Na transport processes or antioxidant defence.
Asunto(s)
Cromosomas de las Plantas/genética , Hordeum/genética , Tolerancia a la Sal/genética , Cloruro de Sodio/metabolismo , Estrés Fisiológico/genética , Triticum/genética , Genes de Plantas/genética , Hordeum/metabolismo , Ósmosis/fisiología , Fotosíntesis/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Potasio/metabolismo , Salinidad , Sodio/metabolismo , Triticum/metabolismoRESUMEN
Salicylic acid is a promising compound for the reduction of stress sensitivity in plants. Although several biochemical and physiological changes have been described in plants treated with salicylic acid, the mode of action of the various treatments has not yet been clarified. The present work reports a detailed comparative study on the effects of different modes of salicylic acid application at the physiological, metabolomic, and transcriptomic levels. Seed soaking and hydroponic treatments were found to induce various changes in the protective mechanisms of wheat plants. The possible involvement of the flavonoid metabolism in salicylic acid-related stress signaling was also demonstrated. Different salicylic acid treatments were shown to induce different physiological and biochemical processes, with varying responses in the leaves and roots. Hydroponic treatment enhanced the level of oxidative stress, the expression of genes involved in the flavonoid metabolism and the amount of non-enzymatic antioxidant compounds, namely ortho-hydroxycinnamic acid and the flavonol quercetin in the leaves, while it decreased the ortho-hydroxycinnamic acid and flavonol contents and enhanced ascorbate peroxidase activity in the roots. In contrast, seed soaking only elevated the gene expression level of phenylalanine ammonia lyase in the roots and caused a slight increase in the amount of flavonols. These results draw attention to the fact that the effects of exogenous salicylic acid application cannot be generalized in different experimental systems and that the flavonoid metabolism may be an important part of the action mechanisms induced by salicylic acid.
RESUMEN
The rate of carbon and nitrogen assimilation is highly sensitive to stress factors, such as low temperature and drought. Little is known about the role of light in the simultaneous effect of cold and drought. The present study thus focused on the combined effect of mild water deficiency and different light intensities during the early cold hardening in durum wheat (Triticum turgidum ssp. durum L.) cultivars with different levels of cold sensitivity. The results showed that reduced illumination decreased the undesirable effects of photoinhibition in the case of net photosynthesis and nitrate reduction, which may help to sustain these processes at low temperature. Mild water deficiency also had a slight positive effect on the effective quantum efficiency of PSII and the nitrate reductase activity in the cold. Glutamine synthesis was affected by light rather than by water deprivation during cold stress. The invertase activity increased to a greater extent by water deprivation, but an increase in illumination also had a facilitating effect on this enzyme. This suggests that both moderate water deficiency and light have an influence on nitrogen metabolism and sucrose degradation during cold hardening. A possible rise in the soluble sugar content caused by the invertase may compensate for the decline in photosynthetic carbon assimilation indicated by the decrease in net photosynthesis. The changes in the osmotic potential can be also correlated to the enhanced level of invertase activity. Both of them were regulated by light at normal water supply, but not at water deprivation in the cold. However, changes in the metabolic enzyme activities and osmotic adjustment could not be directly contributed to the different levels of cold tolerance of the cultivars in the early acclimation period.
Asunto(s)
Frío , Luz , Nitrógeno/metabolismo , Sacarosa/metabolismo , Triticum/metabolismo , Triticum/efectos de la radiación , Agua/metabolismo , Adaptación Fisiológica/efectos de la radiación , Dióxido de Carbono/metabolismo , Transporte de Electrón/efectos de la radiación , Glutamato-Amoníaco Ligasa/metabolismo , Nitrato-Reductasa/metabolismo , Ósmosis/efectos de la radiación , Fotosíntesis/efectos de la radiación , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Triticum/enzimología , beta-Fructofuranosidasa/metabolismoRESUMEN
UNLABELLED: C-repeat binding factor 14 (CBF14) is a plant transcription factor that regulates a set of cold-induced genes, contributing to enhanced frost tolerance during cold acclimation. Many CBF genes are induced by cool temperatures and regulated by day length and light quality, which affect the amount of accumulated freezing tolerance. Here we show that a low red to far-red ratio in white light enhances CBF14 expression and increases frost tolerance at 15°C in winter Triticum aesitivum and Hordeum vulgare genotypes, but not in T. monococcum (einkorn), which has a relatively low freezing tolerance. Low red to far-red ratio enhances the expression of PHYA in all three species, but induces PHYB expression only in einkorn. Based on our results, a model is proposed to illustrate the supposed positive effect of phytochrome A and the negative influence of phytochrome B on the enhancement of freezing tolerance in cereals in response to spectral changes of incident light. KEY WORDS: CBF-regulon, barley, cereals, cold acclimation, freezing tolerance, light regulation, low red/far-red ratio, phytochrome, wheat.
Asunto(s)
Adaptación Fisiológica/genética , Grano Comestible/genética , Grano Comestible/fisiología , Congelación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Proteínas de Plantas/genética , Temperatura , Aclimatación/genética , Aclimatación/efectos de la radiación , Grano Comestible/efectos de la radiación , Hordeum/genética , Hordeum/fisiología , Hordeum/efectos de la radiación , Modelos Biológicos , Fitocromo/genética , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/fisiología , Triticum/efectos de la radiaciónRESUMEN
Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.
Asunto(s)
Antioxidantes/metabolismo , Cadmio/toxicidad , Ácido Salicílico/metabolismo , Triticum/metabolismo , Adaptación Biológica , Ácido Benzoico/metabolismo , Cadmio/metabolismo , Ácidos Cumáricos/metabolismo , Expresión Génica/efectos de los fármacos , Genotipo , Inactivación Metabólica , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Fitoquelatinas , Estrés Fisiológico , Triticum/efectos de los fármacos , Triticum/genéticaRESUMEN
Plants detect the presence of neighbouring vegetation by monitoring changes in the ratio of red (R) to far-red (FR) wavelengths (R:FR) in ambient light. Reductions in R:FR are perceived by the phytochrome family of plant photoreceptors and initiate a suite of developmental responses termed the shade avoidance syndrome. These include increased elongation growth of stems and petioles, enabling plants to overtop competing vegetation. The majority of shade avoidance experiments are performed at standard laboratory growing temperatures (>20°C). In these conditions, elongation responses to low R:FR are often accompanied by reductions in leaf development and accumulation of plant biomass. Here we investigated shade avoidance responses at a cooler temperature (16°C). In these conditions, Arabidopsis thaliana displays considerable low R:FR-mediated increases in leaf area, with reduced low R:FR-mediated petiole elongation and leaf hyponasty responses. In Landsberg erecta, these strikingly different shade avoidance phenotypes are accompanied by increased leaf thickness, increased biomass and an altered metabolite profile. At 16°C, low R:FR treatment results in the accumulation of soluble sugars and metabolites associated with cold acclimation. Analyses of natural genetic variation in shade avoidance responses at 16°C have revealed a regulatory role for the receptor-like kinase ERECTA.